A192752 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
1, 7, 12, 23, 39, 66, 109, 179, 292, 475, 771, 1250, 2025, 3279, 5308, 8591, 13903, 22498, 36405, 58907, 95316, 154227, 249547, 403778, 653329, 1057111, 1710444, 2767559, 4478007, 7245570, 11723581, 18969155, 30692740, 49661899, 80354643
Offset: 0
Keywords
Programs
-
Mathematica
q = x^2; s = x + 1; z = 40; p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + 4 n + 3; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}](* A192752 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}](* A192753 *)
Formula
Conjecture: G.f.: ( 1+5*x-2*x^2 ) / ( (x-1)*(x^2+x-1) ). a(n) = A000071(n+3)+5*A000071(n+2) -2*A000071(n+1) and first differences in A022136. - R. J. Mathar, May 04 2014
Comments