A192755 Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
0, 1, 7, 19, 42, 82, 150, 263, 449, 753, 1248, 2052, 3356, 5469, 8891, 14431, 23398, 37910, 61394, 99395, 160885, 260381, 421372, 681864, 1103352, 1785337, 2888815, 4674283, 7563234, 12237658, 19801038, 32038847, 51840041, 83879049
Offset: 0
Keywords
Programs
-
Mathematica
p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + 5 n + 1; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192754 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192755 *)
Formula
From R. J. Mathar, May 04 2014: (Start)
Conjecture: G.f.: -x*(1+4*x) / ( (x^2+x-1)*(x-1)^2 ).
Partial sums of A192754. (End)
Comments