This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192756 #8 May 04 2014 17:26:56 %S A192756 0,1,6,17,38,75,138,243,416,699,1160,1909,3124,5093,8282,13445,21802, %T A192756 35327,57214,92631,149940,242671,392716,635497,1028328,1663945, %U A192756 2692398,4356473,7049006,11405619,18454770,29860539,48315464,78176163 %N A192756 Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments. %C A192756 The titular polynomial is defined recursively by p(n,x)=x*(n-1,x)+5n for n>0, where p(0,x)=1. For discussions of polynomial reduction, see A192232 and A192744. %F A192756 Conjecture: G.f.: -x*(1+3*x+x^2) / ( (x^2+x-1)*(x-1)^2 ). a(n) = A001924(n)+3*A001924(n-1)+A001924(n-2). Partial sums of A166863. - _R. J. Mathar_, May 04 2014 %t A192756 q = x^2; s = x + 1; z = 40; %t A192756 p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + 5 n; %t A192756 Table[Expand[p[n, x]], {n, 0, 7}] %t A192756 reduce[{p1_, q_, s_, x_}] := %t A192756 FixedPoint[(s PolynomialQuotient @@ #1 + %t A192756 PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] %t A192756 t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; %t A192756 u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] %t A192756 (* A166863 *) %t A192756 u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] %t A192756 (* A192756 *) %Y A192756 Cf. A192744, A192232. %K A192756 nonn %O A192756 0,3 %A A192756 _Clark Kimberling_, Jul 09 2011