A192758 Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
0, 1, 2, 4, 7, 13, 22, 37, 61, 101, 165, 269, 437, 710, 1151, 1865, 3020, 4890, 7915, 12810, 20730, 33546, 54282, 87834, 142122, 229963, 372092, 602062, 974161, 1576231, 2550400, 4126639, 6677047, 10803695, 17480751, 28284455, 45765215
Offset: 1
Keywords
Programs
-
Mathematica
q = x^2; s = x + 1; z = 40; p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + Floor[(n + 4)/4] /; n > 0; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A080239 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192758 *)
Formula
Conjecture: G.f.: -x^2 / ( (1+x)*(x^2+1)*(x^2+x-1)*(x-1)^2 ), partial sums of A080239. a(n)-a(n-2) = A097083(n-1). - R. J. Mathar, May 04 2014
Comments