A192759 Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
0, 1, 2, 4, 7, 12, 21, 35, 58, 95, 155, 253, 411, 667, 1081, 1751, 2836, 4591, 7431, 12026, 19461, 31492, 50958, 82455, 133418, 215878, 349302, 565186, 914494, 1479686, 2394186, 3873879, 6268072, 10141958, 16410037, 26552002, 42962047
Offset: 0
Keywords
Programs
-
Mathematica
p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + Floor[(n + 5)/5] /; n > 0; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A124502 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192759 *)
Formula
Conjecture: G.f.: -x / ( (x^2+x-1)*(x^4+x^3+x^2+x+1)*(x-1)^2 ), partial sums of A124502. - R. J. Mathar, May 04 2014
Comments