A192761 Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
0, 1, 5, 11, 22, 40, 70, 119, 199, 329, 540, 882, 1436, 2333, 3785, 6135, 9938, 16092, 26050, 42163, 68235, 110421, 178680, 289126, 467832, 756985, 1224845, 1981859, 3206734, 5188624, 8395390, 13584047, 21979471, 35563553, 57543060, 93106650
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Programs
-
Mathematica
q = x^2; s = x + 1; z = 40; p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + n + 3; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A022318 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192761 *)
Formula
a(n) = 3*a(n-1)-2*a(n-2)-a(n-3)+a(n-4). G.f.: x*(2*x^2-2*x-1) / ((x-1)^2*(x^2+x-1)). [Colin Barker, Dec 08 2012]
Comments