This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192762 #14 Feb 19 2025 02:40:50 %S A192762 0,1,6,13,26,47,82,139,232,383,628,1025,1668,2709,4394,7121,11534, %T A192762 18675,30230,48927,79180,128131,207336,335493,542856,878377,1421262, %U A192762 2299669,3720962,6020663,9741658,15762355,25504048,41266439,66770524 %N A192762 Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments. %C A192762 The titular polynomial is defined recursively by p(n,x)=x*(n-1,x)+n+4 for n>0, where p(0,x)=1. For discussions of polynomial reduction, see A192232 and A192744. %H A192762 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,-1,1). %F A192762 a(n) = 3*a(n-1)-2*a(n-2)-a(n-3)+a(n-4). G.f.: x*(3*x^2-3*x-1) / ((x-1)^2*(x^2+x-1)). [_Colin Barker_, Dec 08 2012] %t A192762 p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + n + 4; %t A192762 Table[Expand[p[n, x]], {n, 0, 7}] %t A192762 reduce[{p1_, q_, s_, x_}] := %t A192762 FixedPoint[(s PolynomialQuotient @@ #1 + %t A192762 PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] %t A192762 t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; %t A192762 u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] %t A192762 (* A022319 *) %t A192762 u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] %t A192762 (* A192762 *) %Y A192762 Cf. A192744, A192232, A022319 (first differences). %K A192762 nonn,easy %O A192762 0,3 %A A192762 _Clark Kimberling_, Jul 09 2011