A192777 Constant term in the reduction of the n-th Fibonacci polynomial by x^3->x^2+3x+1. See Comments.
1, 0, 1, 1, 2, 8, 14, 55, 121, 392, 989, 2912, 7797, 22104, 60553, 169289, 467622, 1300888, 3603914, 10008543, 27755249, 77034176, 213702153, 593005504, 1645265209, 4565154816, 12666317073, 35144684065, 97512548090, 270561677224
Offset: 1
Keywords
Examples
The first five polynomials p(n,x) and their reductions are as follows: F1(x)=1 -> 1 F2(x)=x -> x F3(x)=x^2+1 -> x^2+1 F4(x)=x^3+2x -> x^2+5x+1 F5(x)=x^4+3x^2+1 -> 7x^2+4x+2, so that A192777=(1,0,1,1,2,...), A192778=(0,1,0,5,4,...), A192779=(0,0,1,1,7,...)
Links
- Index entries for linear recurrences with constant coefficients, signature (1,6,-1,-6,1,1).
Programs
-
Mathematica
q = x^3; s = x^2 + 3 x + 1; z = 40; p[n_, x_] := Fibonacci[n, x]; Table[Expand[p[n, x]], {n, 1, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 1, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192777 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192778 *) u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}] (* A192779 *)
Formula
a(n)=a(n-1)+6*a(n-2)-a(n-3)-6*a(n-4)+a(n-5)+a(n-6).
G.f.: -x*(1-5*x^2+x^4-x+x^3) / ( (x^2-x-1)*(x^4+2*x^3-3*x^2-2*x+1) ). - R. J. Mathar, May 06 2014
Comments