This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192781 #12 Feb 18 2025 11:54:49 %S A192781 0,1,0,2,1,4,6,12,25,46,96,183,368,720,1424,2809,5536,10930,21545, %T A192781 42516,83846,165404,326257,643550,1269440,2503983,4939232,9742752, %U A192781 19217952,37908017,74774848,147495906,290940561,573890084,1132017286,2232942124 %N A192781 Coefficient of x in the reduction of the n-th Fibonacci polynomial by x^3->x^2+1. %C A192781 For discussions of polynomial reduction, see A192232 and A192744. %H A192781 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-1,-3,1,1). %F A192781 a(n) = a(n-1)+3*a(n-2)-a(n-3)-3*a(n-4)+a(n-5)+a(n-6). %F A192781 G.f.: x^2*(x^2+x-1)/(x^6+x^5-3*x^4-x^3+3*x^2+x-1). [_Colin Barker_, Nov 23 2012] %e A192781 The first five polynomials p(n,x) and their reductions: %e A192781 F1(x)=1 -> 1 %e A192781 F2(x)=x -> x %e A192781 F3(x)=x^2+1 -> x^2+1 %e A192781 F4(x)=x^3+2x -> x^2+2x+1 %e A192781 F5(x)=x^4+3x^2+1 -> 4x^2+1x+2, so that %e A192781 A192777=(1,0,1,1,2,...), A192778=(0,1,0,2,1,...), A192779=(0,0,1,1,4,...) %t A192781 q = x^3; s = x^2 + 1; z = 40; %t A192781 p[n_, x_] := Fibonacci[n, x]; %t A192781 Table[Expand[p[n, x]], {n, 1, 7}] %t A192781 reduce[{p1_, q_, s_, x_}] := %t A192781 FixedPoint[(s PolynomialQuotient @@ #1 + %t A192781 PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] %t A192781 t = Table[reduce[{p[n, x], q, s, x}], {n, 1, z}]; %t A192781 u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] %t A192781 (* A192780 *) %t A192781 u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] %t A192781 (* A192781 *) %t A192781 u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}] %t A192781 (* A192782 *) %Y A192781 Cf. A192744, A192232, A192616, A192780, A192782. %K A192781 nonn,easy %O A192781 1,4 %A A192781 _Clark Kimberling_, Jul 09 2011