cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192783 G.f. satisfies: A(x) = Product_{n>=1} 1/(1 - x^n*A(x)^(n^3)).

This page as a plain text file.
%I A192783 #5 Mar 30 2012 18:37:27
%S A192783 1,1,3,16,119,1145,13301,180464,2821941,50400230,1022250876,
%T A192783 23424407915,602724515761,17299947151776,550101222059396,
%U A192783 19246320555772626,736247255316380311,30620337253882961105,1377609185722013042566,66750666290443384609574
%N A192783 G.f. satisfies: A(x) = Product_{n>=1} 1/(1 - x^n*A(x)^(n^3)).
%F A192783 G.f. satisfies: A(x) = exp( Sum_{n>=1} (x^n/n)*Sum_{d|n} d*A(x)^(n*d^2) ).
%e A192783 G.f: A(x) = 1 + x + 3*x^2 + 16*x^3 + 119*x^4 + 1145*x^5 + 13301*x^6 +...
%e A192783 The g.f. A = A(x) satisfies:
%e A192783 A = 1/((1 - x*A)*(1 - x^2*A^8)*(1 - x^3*A^27)*(1 - x^4*A^64)*...),
%e A192783 as well as the logarithmic series:
%e A192783 log(A) = x*A + x^2*(A^2 + 2*A^8)/2 + x^3*(A^3 + 3*A^27)/3 + x^4*(A^4 + 2*A^16 + 4*A^64)/4 + x^5*(A^5 + 5*A^125)/5 + x^6*(A^6 + 2*A^24 + 3*A^54 + 6*A^216)/6  +...
%o A192783 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, 1-x^k*(A+x*O(x^n))^(k^3))); polcoeff(A, n)}
%o A192783 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (x^m/m)*sumdiv(m, d, d*(A+x*O(x^n))^(m*d^2))))); polcoeff(A, n)}
%Y A192783 Cf. A109085, A192768.
%K A192783 nonn
%O A192783 0,3
%A A192783 _Paul D. Hanna_, Jul 09 2011