A192798 Constant term in the reduction of the n-th Fibonacci polynomial by x^3->x^2+2. See Comments.
1, 0, 1, 2, 3, 10, 17, 42, 87, 188, 411, 876, 1907, 4100, 8863, 19134, 41289, 89174, 192459, 415542, 897049, 1936576, 4180809, 9025544, 19484825, 42064320, 90809993, 196043706, 423225563, 913674090, 1972469945, 4258235410, 9192822255
Offset: 1
Examples
The first five polynomials p(n,x) and their reductions: F1(x)=1 -> 1 F2(x)=x -> x F3(x)=x^2+1 -> x^2+1 F4(x)=x^3+2x -> x^2+2x+2 F5(x)=x^4+3x^2+1 -> 4x^2+2*x+3, so that A192798=(1,0,1,2,3,...), A192799=(0,1,0,2,2,...), A192800=(0,0,1,1,4,...)
Links
- Index entries for linear recurrences with constant coefficients, signature (1,3,0,-3,1,1).
Programs
-
Mathematica
q = x^3; s = x^2 + 2; z = 40; p[n_, x_] := Fibonacci[n, x]; Table[Expand[p[n, x]], {n, 1, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 1, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192798 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192799 *) u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}] (* A192800 *)
Formula
a(n) = a(n-1)+3*a(n-2)-3*a(n-4)+a(n-5)+a(n-6).
G.f.: -x*(x-1)*(x+1)*(x^2+x-1)/(x^6+x^5-3*x^4+3*x^2+x-1). [Colin Barker, Jul 27 2012]
Extensions
Comment in Mathematica code corrected by Colin Barker, Jul 27 2012
Comments