cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192798 Constant term in the reduction of the n-th Fibonacci polynomial by x^3->x^2+2. See Comments.

Original entry on oeis.org

1, 0, 1, 2, 3, 10, 17, 42, 87, 188, 411, 876, 1907, 4100, 8863, 19134, 41289, 89174, 192459, 415542, 897049, 1936576, 4180809, 9025544, 19484825, 42064320, 90809993, 196043706, 423225563, 913674090, 1972469945, 4258235410, 9192822255
Offset: 1

Views

Author

Clark Kimberling, Jul 10 2011

Keywords

Comments

For discussions of polynomial reduction, see A192232 and A192744.

Examples

			The first five polynomials p(n,x) and their reductions:
F1(x)=1 -> 1
F2(x)=x -> x
F3(x)=x^2+1 -> x^2+1
F4(x)=x^3+2x -> x^2+2x+2
F5(x)=x^4+3x^2+1 -> 4x^2+2*x+3, so that
A192798=(1,0,1,2,3,...), A192799=(0,1,0,2,2,...), A192800=(0,0,1,1,4,...)
		

Crossrefs

Programs

  • Mathematica
    q = x^3; s = x^2 + 2; z = 40;
    p[n_, x_] := Fibonacci[n, x];
    Table[Expand[p[n, x]], {n, 1, 7}]
    reduce[{p1_, q_, s_, x_}] :=
    FixedPoint[(s PolynomialQuotient @@ #1 +
           PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 1, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]  (* A192798 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
      (* A192799 *)
    u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}]
      (* A192800 *)

Formula

a(n) = a(n-1)+3*a(n-2)-3*a(n-4)+a(n-5)+a(n-6).
G.f.: -x*(x-1)*(x+1)*(x^2+x-1)/(x^6+x^5-3*x^4+3*x^2+x-1). [Colin Barker, Jul 27 2012]

Extensions

Comment in Mathematica code corrected by Colin Barker, Jul 27 2012