A192800 Coefficient of x^2 in the reduction of the n-th Fibonacci polynomial by x^3->x^2+2.
0, 0, 1, 1, 4, 7, 16, 35, 73, 162, 344, 748, 1612, 3478, 7517, 16213, 35020, 75585, 163184, 352295, 760517, 1641880, 3544484, 7652008, 16519388, 35662584, 76989693, 166207785, 358815192, 774622191, 1672280660, 3610176155, 7793770037
Offset: 1
Examples
The first five polynomials p(n,x) and their reductions: F1(x)=1 -> 1 F2(x)=x -> x F3(x)=x^2+1 -> x^2+1 F4(x)=x^3+2x -> x^2+2x+2 F5(x)=x^4+3x^2+1 -> 4x^2+2*x+3, so that A192798=(1,0,1,2,3,...), A192799=(0,1,0,2,2,...), A192800=(0,0,1,1,4,...)
Links
- Index entries for linear recurrences with constant coefficients, signature (1,3,0,-3,1,1).
Programs
-
Mathematica
(See A192798.)
Formula
a(n) = a(n-1)+3*a(n-2)-3*a(n-4)+a(n-5)+a(n-6).
G.f.: -x^3/(x^6+x^5-3*x^4+3*x^2+x-1). [Colin Barker, Jul 27 2012]
Comments