This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192805 #11 Jun 13 2015 00:53:54 %S A192805 1,1,1,2,3,6,12,25,53,113,242,519,1114,2392,5137,11033,23697,50898, %T A192805 109323,234814,504356,1083305,2326829,4997793,10734754,23057167, %U A192805 49524466,106373552,228479649,490751217,1054084065,2264066146,4862985491 %N A192805 Constant term in the reduction of the polynomial 1+x+x^2+...+x^n by x^3->x^2+2x+1. See Comments. %C A192805 For discussions of polynomial reduction, see A192232 and A192744. %H A192805 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-1,-1). %F A192805 a(n)=2*a(n-1)+a(n-2)-a(n-3)-a(n-4). %F A192805 G.f.: -(1+x)*(2*x-1) / ( (x-1)*(x^3+2*x^2+x-1) ). - _R. J. Mathar_, May 06 2014 %F A192805 a(n)-a(n-1) = A002478(n-3). - _R. J. Mathar_, May 06 2014 %e A192805 The first five polynomials p(n,x) and their reductions: %e A192805 p(1,x)=1 -> 1 %e A192805 p(2,x)=x+1 -> x+1 %e A192805 p(3,x)=x^2+x+1 -> x^2+x+1 %e A192805 p(4,x)=x^3+x^2+x+1 -> 2x^2+3x+2 %e A192805 p(5,x)=x^4+x^3+x^2+x+1 -> 5x^2+6*x+3, so that %e A192805 A192805=(1,1,1,2,3,...), A002478=(0,1,1,3,6,...), A077864=(0,0,1,2,5,...). %t A192805 q = x^3; s = x^2 + 2 x + 1; z = 40; %t A192805 p[0, x_] := 1; p[n_, x_] := x^n + p[n - 1, x]; %t A192805 Table[Expand[p[n, x]], {n, 0, 7}] %t A192805 reduce[{p1_, q_, s_, x_}] := %t A192805 FixedPoint[(s PolynomialQuotient @@ #1 + %t A192805 PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] %t A192805 t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; %t A192805 u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] %t A192805 (* A192805 *) %t A192805 u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] %t A192805 (* A002478 *) %t A192805 u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}] %t A192805 (* A077864 *) %Y A192805 Cf. A192744, A192232, A002478. %K A192805 nonn %O A192805 0,4 %A A192805 _Clark Kimberling_, Jul 10 2011