This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192871 #28 Feb 23 2022 11:23:48 %S A192871 1,3,6,12,24,48,90,168,318,594,1092,2004,3678,6720,12210,22128,40074, %T A192871 72372,130380,234432,421128,755208,1352328,2418246,4320552,7709898, %U A192871 13744764,24477618,43560444,77448330,137602440,244277016,433399824,768379830,1361530134 %N A192871 Number of n-step prudent self-avoiding walks on honeycomb lattice. %C A192871 A prudent walk never takes a step pointing towards a vertex it has already visited. Prudent walks are self-avoiding but not reversible in general. %H A192871 Alois P. Heinz, <a href="/A192871/b192871.txt">Table of n, a(n) for n = 0..110</a> %H A192871 Mireille Bousquet-Mélou, <a href="https://dmtcs.episciences.org/3627">Families of prudent self-avoiding walks</a>, DMTCS proc. AJ, 2008, 167-180. %H A192871 Mireille Bousquet-Mélou, <a href="https://arxiv.org/abs/0804.4843">Families of prudent self-avoiding walks</a>, arXiv:0804.4843 [math.CO], 2008-2009. %H A192871 Enrica Duchi, <a href="https://hal.archives-ouvertes.fr/hal-00159320">On some classes of prudent walks</a>, in: FPSAC'05, Taormina, Italy, 2005. %e A192871 This 8-step prudent self-avoiding walk on honeycomb lattice from (S) to (E) is not reversible: %e A192871 . o...o o...o %e A192871 . . . . . %e A192871 . o...o 4---3 o %e A192871 . . . / \ . %e A192871 . o 6---5 2...o %e A192871 . . / . / . %e A192871 . o...7 (S)--1 o %e A192871 . . \ . . . %e A192871 . o (E)..o o...o %e A192871 . . . . . %e A192871 . o...o o...0 %p A192871 i:= n-> max(n, 0)+1: d:= n-> max(n-1, -1): %p A192871 b:= proc(n, x, y, z, u, v, w) option remember; %p A192871 `if`(n=0, 1, `if`(x>y, b(n, y, x, w, v, u, z), %p A192871 `if`(min(y, z)<=0 or x=-1, %p A192871 b(n-1, d(y), d(z), u, i(v), i(w), x), 0)+ %p A192871 `if`(min(w, x)<=0 or y=-1, %p A192871 b(n-1, d(w), d(x), y, i(z), i(u), v), 0))) %p A192871 end: %p A192871 a:= n-> `if`(n<2, 1 +2*n, 6*b(n-2, -1, -1, 1, 2, 1, -1)): %p A192871 seq(a(n), n=0..20); %t A192871 i[n_] := Max[n, 0] + 1; d[n_] := Max[n - 1, -1]; %t A192871 b[n_, x_, y_, z_, u_, v_, w_] := b[n, x, y, z, u, v, w] = If[n == 0, 1, If[x > y, b[n, y, x, w, v, u, z], If[Min[y, z] <= 0 || x == -1, b[n - 1, d[y], d[z], u, i[v], i[w], x], 0] + If[Min[w, x] <= 0 || y == -1, b[n - 1, d[w], d[x], y, i[z], i[u], v], 0]]]; %t A192871 a[n_] := If[n < 2, 1 + 2 n, 6 b[n - 2, -1, -1, 1, 2, 1, -1]]; %t A192871 a /@ Range[0, 34] (* _Jean-François Alcover_, Sep 22 2019, after _Alois P. Heinz_ *) %Y A192871 Cf. A001668, A006851, A192208. %K A192871 nonn,walk %O A192871 0,2 %A A192871 _Alois P. Heinz_, Jul 11 2011