This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192905 #15 Sep 08 2022 08:45:58 %S A192905 0,1,3,8,25,79,248,777,2435,7632,23921,74975,234992,736529,2308483, %T A192905 7235416,22677769,71078319,222778856,698249753,2188505347,6859373216, %U A192905 21499148257,67384199871,211200478176,661959956001,2074763216131 %N A192905 Coefficient of x in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) defined below at Comments. %C A192905 The titular polynomial is defined by p(n,x) = (x^2)*p(n-1,x) + x*p(n-2,x), with p(0,x) = 1, p(1,x) = x. For details, see A192904. %H A192905 G. C. Greubel, <a href="/A192905/b192905.txt">Table of n, a(n) for n = 0..1000</a> %H A192905 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,1,1). %F A192905 a(n) = 3*a(n-1) + a(n-3) + a(n-4). %F A192905 G.f.: x*(1-x)*(1+x)/(1-3*x-x^3-x^4). - _Colin Barker_, Aug 31 2012 %t A192905 (See A192904.) %t A192905 LinearRecurrence[{3,0,1,1}, {0,1,3,8}, 30] (* _G. C. Greubel_, Jan 11 2019 *) %o A192905 (PARI) my(x='x+O('x^30)); concat([0], Vec(x*(1-x^2)/(1-3*x-x^3-x^4))) \\ _G. C. Greubel_, Jan 11 2019 %o A192905 (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x*(1-x^2)/(1-3*x-x^3-x^4) )); // _G. C. Greubel_, Jan 11 2019 %o A192905 (Sage) (x*(1-x^2)/(1-3*x-x^3-x^4)).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Jan 11 2019 %o A192905 (GAP) a:=[0,1,3,8];; for n in [5..30] do a[n]:=3*a[n-1]+a[n-3]+a[n-4]; od; a; # _G. C. Greubel_, Jan 11 2019 %Y A192905 Cf. A192232, A192744, A192904, A192872. %K A192905 nonn,easy %O A192905 0,3 %A A192905 _Clark Kimberling_, Jul 12 2011