This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192916 #21 Sep 08 2022 08:45:58 %S A192916 1,0,6,11,34,84,225,584,1534,4011,10506,27500,72001,188496,493494, %T A192916 1291979,3382450,8855364,23183649,60695576,158903086,416013675, %U A192916 1089137946,2851400156,7465062529,19543787424,51166299750,133955111819,350699035714,918141995316 %N A192916 Constant term in the reduction by (x^2 -> x+1) of the polynomial C(n)*x^n, where C=A022095. %C A192916 See A192872. %H A192916 Colin Barker, <a href="/A192916/b192916.txt">Table of n, a(n) for n = 0..1000</a> %H A192916 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-1). %F A192916 a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3). %F A192916 G.f.: (1 -2*x +4*x^2)/((1+x)*(1-3*x+x^2)). - _R. J. Mathar_, May 08 2014 %F A192916 a(n) + a(n+1) = A054492(n). - _R. J. Mathar_, May 07 2014 %F A192916 a(n) = (2^(-n)*(7*(-2)^n+(3+sqrt(5))^n*(-1+2*sqrt(5))-(3-sqrt(5))^n*(1+2*sqrt(5))))/5. - _Colin Barker_, Oct 01 2016 %F A192916 a(n) = Fibonacci(2*n) + 2*Fibonacci(n)*Fibonacci(n-1) + (-1)^n. - _G. C. Greubel_, Jul 28 2019 %t A192916 (* First program *) %t A192916 q = x^2; s = x + 1; z = 28; %t A192916 p[0, x_]:= 1; p[1, x_]:= 5 x; %t A192916 p[n_, x_]:= p[n-1, x]*x + p[n-2, x]*x^2; %t A192916 Table[Expand[p[n, x]], {n, 0, 7}] %t A192916 reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] %t A192916 t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; %t A192916 u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192914 *) %t A192916 u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* see A192878 *) %t A192916 (* Second program *) %t A192916 With[{F=Fibonacci}, Table[F[2*n] +2*F[n]*F[n-1] +(-1)^n, {n,0,30}]] (* _G. C. Greubel_, Jul 28 2019 *) %o A192916 (PARI) a(n) = round((2^(-n)*(7*(-2)^n+(3+sqrt(5))^n*(-1+2*sqrt(5))-(3-sqrt(5))^n*(1+2*sqrt(5))))/5) \\ _Colin Barker_, Oct 01 2016 %o A192916 (PARI) Vec((1+4*x^2-2*x)/((1+x)*(1-3*x+x^2)) + O(x^30)) \\ _Colin Barker_, Oct 01 2016 %o A192916 (PARI) vector(30, n, n--; f=fibonacci; f(2*n) +2*f(n)*f(n-1) +(-1)^n) \\ _G. C. Greubel_, Jul 28 2019 %o A192916 (Magma) F:=Fibonacci; [F(2*n) +2*F(n)*F(n-1) +(-1)^n: n in [0..30]]; // _G. C. Greubel_, Jul 28 2019 %o A192916 (Sage) f=fibonacci; [f(2*n) +2*f(n)*f(n-1) +(-1)^n for n in (0..30)] # _G. C. Greubel_, Jul 28 2019 %o A192916 (GAP) F:=Fibonacci;; List([0..30], n-> F(2*n) +2*F(n)*F(n-1) +(-1)^n); # _G. C. Greubel_, Jul 28 2019 %Y A192916 Cf. A000045, A192232, A192744, A192872, A192917. %K A192916 nonn,easy %O A192916 0,3 %A A192916 _Clark Kimberling_, Jul 12 2011