A192928 The Gi1 and Gi2 sums of Losanitsch's triangle A034851.
1, 1, 1, 1, 2, 2, 3, 3, 5, 6, 9, 11, 16, 20, 29, 37, 53, 69, 98, 130, 183, 245, 343, 463, 646, 877, 1220, 1664, 2310, 3161, 4381, 6009, 8319, 11430, 15811, 21751, 30070, 41405, 57216, 78836, 108906, 150130, 207346
Offset: 0
Links
- R. J. Mathar, Paving rectangular regions with rectangular tiles,...., arXiv:1311.6135 [math.CO], Table 25.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1,1,0,-1,0,1,-1,0,0,-1).
Programs
-
Maple
A192928 := proc(n): (A003269(n+1)+x(n)+x(n-1)+x(n-4))/2 end: A003269 := proc(n): sum(binomial(n-1-3*j, j), j=0..(n-1)/3) end: x:=proc(n): if type(n,even) then A003269(n/2+1) else 0 fi: end: seq(A192928(n),n=0..42);
-
Mathematica
LinearRecurrence[{1, 1, -1, 1, 0, -1, 0, 1, -1, 0, 0, -1}, {1, 1, 1, 1, 2, 2, 3, 3, 5, 6, 9, 11}, 43] (* Jean-François Alcover, Nov 16 2017 *)
Formula
G.f.: (-1/2)*(1/(x^4+x-1) + (1+x+x^4)/(x^8+x^2-1))= -(1+x)*(x^7-x^6+x^5+x-1) / ( (x^4+x-1)*(x^8+x^2-1) ).
From Johannes W. Meijer, Aug 26 2013: (Start)
a(n) = sum(A228572(n, k), k=0..n)
a(n) = sum(A228570(n-k, k), k=0..floor(n/2))
a(n) = sum(A102541(n-2*k, k), k=0..floor(n/3))
a(n) = sum(A034851(n-3*k, k), k=0..floor(n/4)) (End)
Comments