A193006 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined at Comments.
1, 0, 8, 27, 72, 160, 323, 610, 1102, 1929, 3302, 5562, 9261, 15292, 25100, 41023, 66844, 108684, 176447, 286158, 463746, 751165, 1216298, 1968982, 3186937, 5157720, 8346608, 13506435, 21855312, 35364184, 57222107, 92589082, 149814166
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).
Programs
-
Mathematica
q = x^2; s = x + 1; z = 40; p[0, x] := 1; p[n_, x_] := x*p[n - 1, x] + n^3 - 1; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A193006 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A193007 *)
Formula
a(n) = 4*a(n-1)-5*a(n-2)+a(n-3)+2*a(n-4)-a(n-5).
G.f.: (2*x^4-6*x^3+13*x^2-4*x+1)/((x-1)^3*(x^2+x-1)). [Colin Barker, Nov 12 2012]
Comments