A193008 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined at Comments.
1, 2, 10, 31, 78, 170, 339, 636, 1144, 1997, 3412, 5740, 9549, 15758, 25854, 42243, 68818, 111878, 181615, 294520, 477276, 773057, 1251720, 2026296, 3279673, 5307770, 8589394, 13899271, 22490934, 36392642, 58886187, 95281620, 154170784
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).
Programs
-
Mathematica
q = x^2; s = x + 1; z = 40; p[0, x] := 1; p[n_, x_] := x*p[n - 1, x] + n^3 + 1; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A193008 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A193009 *)
Formula
a(n) = 4*a(n-1)-5*a(n-2)+a(n-3)+2*a(n-4)-a(n-5).
G.f.: (7*x^2-2*x+1)/((x-1)^3*(x^2+x-1)). [Colin Barker, Nov 12 2012]
Comments