This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193023 #47 Jan 02 2022 19:12:43 %S A193023 1,11,12,111,112,121,122,123,1111,1112,1121,1122,1123,1211,1212,1213, %T A193023 1221,1222,1223,1231,1232,1233,1234,11111,11112,11121,11122,11123, %U A193023 11211,11212,11213,11221,11222,11223,11231,11232,11233,11234,12111,12112,12113,12121 %N A193023 Triangle read by rows: the n-th row has length A000110(n) and contains all set partitions of an n-set in canonical order. %C A193023 The set partition of [1,2,3,4] given by 13/2/4 would be encoded as 1213: simply record which part i is in, for i=1..n. %C A193023 To get row n, read row n-1 from left to right. If row n-1 contains a word abc...d, in which the maximal number is m, then in row n we place the words abc...d1, abc...d2, abc...d3, ..., abc...d(m+1). %C A193023 This provides a canonical ordering for partitions of a labeled set. %H A193023 Alois P. Heinz, <a href="/A193023/b193023.txt">Rows n = 1..8, flattened</a> %H A193023 R. Kaye, <a href="http://dx.doi.org/10.1016/0020-0190(76)90014-4">A Gray code for set partitions</a>, Info. Proc. Letts., 5 (1976), 171-173. %e A193023 Triangle begins: %e A193023 1; %e A193023 11,12; %e A193023 111,112,121,122,123; %e A193023 1111,1112,1121,1122,1123,1211,1212,1213,1221,1222,1223,1231,1232,1233,1234; %e A193023 11111,11112,11121,11122,11123,... %p A193023 b:= proc(n) option remember; %p A193023 `if`(n=1, [[1]], map(x-> seq([x[], i], i=1..max(x[])+1), b(n-1))) %p A193023 end: %p A193023 T:= n-> map(x-> parse(cat(x[])), b(n))[]: %p A193023 seq(T(n), n=1..5); # _Alois P. Heinz_, Sep 30 2011 %t A193023 b[n_] := b[n] = If[n == 1, {{1}}, Table[Append[#, i], {i, 1, Max[#]+1}]& /@ b[n-1] // Flatten[#, 1]&]; %t A193023 T[n_] := FromDigits /@ b[n]; %t A193023 Array[T, 8] // Flatten (* _Jean-François Alcover_, Feb 19 2021, after _Alois P. Heinz_ *) %Y A193023 This is different from A071159. %Y A193023 Cf. A000110, A120698. %K A193023 nonn,tabf %O A193023 1,2 %A A193023 _N. J. A. Sloane_, Jul 14 2011