cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193024 The number of isomorphism classes of Alexander (a.k.a. affine) quandles of order n.

This page as a plain text file.
%I A193024 #37 Dec 27 2021 13:15:40
%S A193024 1,1,2,3,4,2,6,7,11,4,10,6,12,6,8,23,16,11,18,12,12,10,22,14,39,12,45,
%T A193024 18,28,8,30,48,20,16,24,33,36,18,24,28,40,12,42,30,44,22,46,46,83,39,
%U A193024 32,36,52,45,40,42,36,28,58,24,60,30,66,167,48,20,66,48
%N A193024 The number of isomorphism classes of Alexander (a.k.a. affine) quandles of order n.
%C A193024 Nelson enumerated Alexander quandles to order 16 (see the links below). The values of a(n) for n from 1 to 255 were obtained via a GAP program using ideas from Hou (see the link below).
%H A193024 W. Edwin Clark, <a href="/A193024/b193024.txt">Table of n, a(n) for n = 1..255</a>
%H A193024 W. E. Clark, M. Elhamdadi, M. Saito and T. Yeatman, <a href="http://arxiv.org/abs/1312.3307">Quandle Colorings of Knots and Applications</a>, arXiv preprint arXiv:1312.3307 [math.GT], 2013-2014.
%H A193024 M. Elhamdadi, <a href="http://arxiv.org/abs/1209.6518">Distributivity in Quandles and Quasigroups</a>, arXiv preprint arXiv:1209.6518 [math.RA], 2012. - From _N. J. A. Sloane_, Dec 29 2012
%H A193024 Xiang-dong Hou, <a href="http://arxiv.org/abs/1107.2076">Finite Modules over  Z[t,t^{-1}]</a>, arXiv:1107.2076 [math.RA], 2011.
%H A193024 S. Nelson, <a href="http://arxiv.org/abs/math/0202281">Classification of Finite Alexander Quandles</a>, arXiv:math/0202281 [math.GT], 2002-2003.
%H A193024 S. Nelson, <a href="http://arxiv.org/abs/math/0409460">Alexander Quandles of Order 16s</a>, arXiv:math/0409460 [math.GT], 2004-2006.
%H A193024 Wikipedia, <a href="http://en.wikipedia.org/wiki/Quandle">Racks and Quandles </a>
%o A193024 (GAP)
%o A193024 findY:=function(f,g)
%o A193024 local Y,y;
%o A193024   Y:=[];
%o A193024   for y in g do
%o A193024     Add(Y,Image(f,y^(-1))*y);
%o A193024   od;
%o A193024   Y:=Set(Y);
%o A193024   return Subgroup(g,Y);
%o A193024 end;;
%o A193024 Alex:=[];;k:=8;;
%o A193024 for nn in [1..2^k-1] do
%o A193024   Alex[nn]:=0;
%o A193024 od;
%o A193024 for n in [1..2^k-1] do
%o A193024   LGn:=AllSmallGroups(n,IsAbelian);
%o A193024   for g in LGn do
%o A193024     autg:=AutomorphismGroup(g);;
%o A193024     eautg:=List(ConjugacyClasses(autg),Representative);
%o A193024     for f in eautg do
%o A193024       N2:=findY(f,g);
%o A193024       MM:= ((Size(g)^2)/Size(N2));
%o A193024       for nn in [1..2^k-1] do
%o A193024         if nn mod MM = 0 then
%o A193024           Alex[nn]:=Alex[nn]+1;
%o A193024         fi;
%o A193024       od;
%o A193024     od;
%o A193024   od;
%o A193024 od;
%o A193024 for nn in [1..2^k-1] do
%o A193024   Print(Alex[nn], ",");
%o A193024 od;;
%Y A193024 See Index to OEIS under quandles.
%K A193024 nonn
%O A193024 1,3
%A A193024 _W. Edwin Clark_, Jul 15 2011