This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193024 #37 Dec 27 2021 13:15:40 %S A193024 1,1,2,3,4,2,6,7,11,4,10,6,12,6,8,23,16,11,18,12,12,10,22,14,39,12,45, %T A193024 18,28,8,30,48,20,16,24,33,36,18,24,28,40,12,42,30,44,22,46,46,83,39, %U A193024 32,36,52,45,40,42,36,28,58,24,60,30,66,167,48,20,66,48 %N A193024 The number of isomorphism classes of Alexander (a.k.a. affine) quandles of order n. %C A193024 Nelson enumerated Alexander quandles to order 16 (see the links below). The values of a(n) for n from 1 to 255 were obtained via a GAP program using ideas from Hou (see the link below). %H A193024 W. Edwin Clark, <a href="/A193024/b193024.txt">Table of n, a(n) for n = 1..255</a> %H A193024 W. E. Clark, M. Elhamdadi, M. Saito and T. Yeatman, <a href="http://arxiv.org/abs/1312.3307">Quandle Colorings of Knots and Applications</a>, arXiv preprint arXiv:1312.3307 [math.GT], 2013-2014. %H A193024 M. Elhamdadi, <a href="http://arxiv.org/abs/1209.6518">Distributivity in Quandles and Quasigroups</a>, arXiv preprint arXiv:1209.6518 [math.RA], 2012. - From _N. J. A. Sloane_, Dec 29 2012 %H A193024 Xiang-dong Hou, <a href="http://arxiv.org/abs/1107.2076">Finite Modules over Z[t,t^{-1}]</a>, arXiv:1107.2076 [math.RA], 2011. %H A193024 S. Nelson, <a href="http://arxiv.org/abs/math/0202281">Classification of Finite Alexander Quandles</a>, arXiv:math/0202281 [math.GT], 2002-2003. %H A193024 S. Nelson, <a href="http://arxiv.org/abs/math/0409460">Alexander Quandles of Order 16s</a>, arXiv:math/0409460 [math.GT], 2004-2006. %H A193024 Wikipedia, <a href="http://en.wikipedia.org/wiki/Quandle">Racks and Quandles </a> %o A193024 (GAP) %o A193024 findY:=function(f,g) %o A193024 local Y,y; %o A193024 Y:=[]; %o A193024 for y in g do %o A193024 Add(Y,Image(f,y^(-1))*y); %o A193024 od; %o A193024 Y:=Set(Y); %o A193024 return Subgroup(g,Y); %o A193024 end;; %o A193024 Alex:=[];;k:=8;; %o A193024 for nn in [1..2^k-1] do %o A193024 Alex[nn]:=0; %o A193024 od; %o A193024 for n in [1..2^k-1] do %o A193024 LGn:=AllSmallGroups(n,IsAbelian); %o A193024 for g in LGn do %o A193024 autg:=AutomorphismGroup(g);; %o A193024 eautg:=List(ConjugacyClasses(autg),Representative); %o A193024 for f in eautg do %o A193024 N2:=findY(f,g); %o A193024 MM:= ((Size(g)^2)/Size(N2)); %o A193024 for nn in [1..2^k-1] do %o A193024 if nn mod MM = 0 then %o A193024 Alex[nn]:=Alex[nn]+1; %o A193024 fi; %o A193024 od; %o A193024 od; %o A193024 od; %o A193024 od; %o A193024 for nn in [1..2^k-1] do %o A193024 Print(Alex[nn], ","); %o A193024 od;; %Y A193024 See Index to OEIS under quandles. %K A193024 nonn %O A193024 1,3 %A A193024 _W. Edwin Clark_, Jul 15 2011