A193035 Decimal expansion of the coefficient of x in the reduction of 2^(-x) by x^2->x+1.
5, 4, 0, 6, 8, 2, 6, 4, 1, 9, 5, 8, 4, 8, 0, 3, 8, 3, 7, 7, 7, 4, 1, 0, 5, 5, 2, 7, 2, 4, 2, 2, 1, 3, 0, 1, 2, 4, 8, 5, 3, 2, 6, 9, 1, 1, 1, 1, 6, 8, 3, 2, 4, 5, 8, 9, 2, 4, 2, 2, 0, 4, 6, 0, 0, 1, 1, 2, 4, 2, 6, 6, 3, 6, 2, 3, 0, 3, 2, 9, 8, 4, 8, 6, 1, 1, 9, 1, 3, 0, 5, 0, 8, 7, 2, 7, 3, 3, 7, 2, 6, 3
Offset: 0
Examples
-0.540682641958480383777410552724221301248532691111...
Programs
-
Mathematica
f[x_] := 2^(-x); r[n_] := Fibonacci[n]; c[n_] := SeriesCoefficient[Series[f[x], {x, 0, n}], n] u1 = N[Sum[c[n]*r[n], {n, 0, 100}], 100] RealDigits[u1, 10]
Formula
From Amiram Eldar, Jan 19 2022: (Start)
Equals Sum_{k>=0} (-log(2))^k*Fibonacci(k)/k!.
Equals -(2^sqrt(5) - 1)/(sqrt(5)*2^phi), where phi is the golden ratio (A001622). (End)
Extensions
a(99) corrected by Georg Fischer, Aug 04 2024
Comments