This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193067 #42 Aug 06 2025 15:05:43 %S A193067 1,0,1,1,3,0,5,2,8,0,9,1,11,0,3,9,15,0,17,3,5,0,21,2,34,0,30,5,27,0, %T A193067 29,8,9,0,15,8,35,0,11,6,39,0,41,9,24,0,45,9,76,0,15,11,51,0,27,10,17, %U A193067 0,57,3,59,0,40,61,33,0,65,15,21,0,69,16,71,0,34 %N A193067 The number of isomorphism classes of connected Alexander (a.k.a. indecomposable affine) quandles of order n. %C A193067 Finite connected Alexander (affine) quandles are Latin. According to the Toyoda-Bruck theorem, Latin affine quandles are the same objects as idempotent medial quasigroups. The values up to 16 were obtained by Nelson (see links below). - Edited by _David Stanovsky_, Oct 01 2014 %H A193067 W. Edwin Clark, <a href="/A193067/b193067.txt">Table of n, a(n) for n = 1..255</a> %H A193067 W. Edwin Clark, M. Elhamdadi, M. Saito, and T. Yeatman, <a href="http://arxiv.org/abs/1312.3307">Quandle Colorings of Knots and Applications</a>, arXiv preprint arXiv:1312.3307 [math.GT], 2013-2014. %H A193067 S. Nelson, <a href="http://arxiv.org/abs/math/0202281">Classification of Finite Alexander Quandles</a>, arXiv:math/0202281 [math.GT], 2002-2003. %H A193067 S. Nelson, <a href="http://arxiv.org/abs/math/0409460">Alexander Quandles of Order 16</a>, arXiv:math/0409460 [math.GT], 2004-2006. %H A193067 K. Toyoda, <a href="http://dx.doi.org/10.3792/pia/1195578751">On axioms of linear functions</a>, Proceedings of the Imperial Academy 17/7(1941), 221-227. %H A193067 Wikipedia, <a href="https://en.wikipedia.org/wiki/Medial_magma">Medial magma</a> %H A193067 <a href="/index/Qua#quandles">Index entries for sequences related to quandles and racks</a> %o A193067 (GAP) %o A193067 findY:=function(f,g) %o A193067 local Y,y; %o A193067 Y:=[]; %o A193067 for y in g do %o A193067 Add(Y,Image(f,y^(-1))*y); %o A193067 od; %o A193067 Y:=Set(Y); %o A193067 return Subgroup(g,Y); %o A193067 end;; %o A193067 CA:=[];; %o A193067 k:=8;; %o A193067 for n in [1..2^k-1] do %o A193067 CA[n]:=0; %o A193067 LGn:=AllSmallGroups(n,IsAbelian); %o A193067 for g in LGn do %o A193067 autg:=AutomorphismGroup(g);; %o A193067 eautg:=List(ConjugacyClasses(autg),Representative); %o A193067 for f in eautg do %o A193067 N2:=findY(f,g); %o A193067 if Size(N2) = n then CA[n]:=CA[n]+1; fi; %o A193067 od; %o A193067 od; %o A193067 for j in [1..k] do %o A193067 if n = 2^j and n <> 2^(j-1) then Print("done to ",n, "\n"); fi; %o A193067 od; %o A193067 od; %o A193067 for n in [1..2^k-1] do %o A193067 Print(CA[n], ","); %o A193067 od; %K A193067 nonn %O A193067 1,5 %A A193067 _W. Edwin Clark_, Jul 15 2011