cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193067 The number of isomorphism classes of connected Alexander (a.k.a. indecomposable affine) quandles of order n.

This page as a plain text file.
%I A193067 #42 Aug 06 2025 15:05:43
%S A193067 1,0,1,1,3,0,5,2,8,0,9,1,11,0,3,9,15,0,17,3,5,0,21,2,34,0,30,5,27,0,
%T A193067 29,8,9,0,15,8,35,0,11,6,39,0,41,9,24,0,45,9,76,0,15,11,51,0,27,10,17,
%U A193067 0,57,3,59,0,40,61,33,0,65,15,21,0,69,16,71,0,34
%N A193067 The number of isomorphism classes of connected Alexander (a.k.a. indecomposable affine) quandles of order n.
%C A193067 Finite connected Alexander (affine) quandles are Latin. According to the Toyoda-Bruck theorem, Latin affine quandles are the same objects as idempotent medial quasigroups. The values up to 16 were obtained by Nelson (see links below). - Edited by _David Stanovsky_, Oct 01 2014
%H A193067 W. Edwin Clark, <a href="/A193067/b193067.txt">Table of n, a(n) for n = 1..255</a>
%H A193067 W. Edwin Clark, M. Elhamdadi, M. Saito, and T. Yeatman, <a href="http://arxiv.org/abs/1312.3307">Quandle Colorings of Knots and Applications</a>, arXiv preprint arXiv:1312.3307 [math.GT], 2013-2014.
%H A193067 S. Nelson, <a href="http://arxiv.org/abs/math/0202281">Classification of Finite Alexander Quandles</a>, arXiv:math/0202281 [math.GT], 2002-2003.
%H A193067 S. Nelson, <a href="http://arxiv.org/abs/math/0409460">Alexander Quandles of Order 16</a>, arXiv:math/0409460 [math.GT], 2004-2006.
%H A193067 K. Toyoda, <a href="http://dx.doi.org/10.3792/pia/1195578751">On axioms of linear functions</a>, Proceedings of the Imperial Academy 17/7(1941), 221-227.
%H A193067 Wikipedia, <a href="https://en.wikipedia.org/wiki/Medial_magma">Medial magma</a>
%H A193067 <a href="/index/Qua#quandles">Index entries for sequences related to quandles and racks</a>
%o A193067 (GAP)
%o A193067 findY:=function(f,g)
%o A193067 local Y,y;
%o A193067   Y:=[];
%o A193067   for y in g do
%o A193067     Add(Y,Image(f,y^(-1))*y);
%o A193067   od;
%o A193067   Y:=Set(Y);
%o A193067   return Subgroup(g,Y);
%o A193067 end;;
%o A193067 CA:=[];;
%o A193067 k:=8;;
%o A193067 for n in [1..2^k-1] do
%o A193067    CA[n]:=0;
%o A193067    LGn:=AllSmallGroups(n,IsAbelian);
%o A193067    for g in LGn do
%o A193067      autg:=AutomorphismGroup(g);;
%o A193067      eautg:=List(ConjugacyClasses(autg),Representative);
%o A193067      for f in eautg do
%o A193067        N2:=findY(f,g);
%o A193067        if Size(N2) = n then CA[n]:=CA[n]+1; fi;
%o A193067      od;
%o A193067    od;
%o A193067    for j in [1..k] do
%o A193067    if n = 2^j and n <> 2^(j-1) then Print("done to ",n, "\n"); fi;
%o A193067    od;
%o A193067 od;
%o A193067 for n in [1..2^k-1] do
%o A193067   Print(CA[n], ",");
%o A193067 od;
%K A193067 nonn
%O A193067 1,5
%A A193067 _W. Edwin Clark_, Jul 15 2011