A193075 Decimal expansion of the constant term of the reduction of phi^x by x^2->x+1, where phi=(1+sqrt(5))/2 is the golden ratio (A001622).
1, 1, 3, 9, 5, 6, 4, 7, 0, 6, 8, 7, 9, 3, 2, 1, 6, 0, 8, 2, 3, 7, 8, 8, 1, 6, 5, 0, 5, 7, 9, 3, 1, 8, 7, 1, 1, 3, 1, 7, 3, 5, 8, 0, 0, 7, 5, 5, 8, 5, 2, 2, 8, 1, 7, 4, 5, 0, 1, 3, 3, 5, 1, 7, 8, 9, 0, 7, 2, 4, 8, 6, 0, 3, 9, 5, 9, 6, 7, 2, 5, 7, 3, 4, 6, 3, 0, 2, 0, 5, 5, 2, 9, 8, 2, 5, 0, 2, 2, 0
Offset: 1
Examples
1.13956470687932160823788165057931871131735800...
Programs
-
Mathematica
t = GoldenRatio f[x_] := t^(x); r[n_] := Fibonacci[n]; c[n_] := SeriesCoefficient[Series[f[x], {x, 0, n}], n] u0 = N[Sum[c[n]*r[n - 1], {n, 0, 100}], 100] RealDigits[u0, 10]
Formula
From Amiram Eldar, Jan 19 2022: (Start)
Equals 1 + Sum_{k>=1} log(phi)^k*Fibonacci(k-1)/k!.
Equals (sqrt(5)*phi^sqrt(5) + phi^4 - 1)/(5*phi^phi). (End)
Comments