This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193090 #50 Jan 31 2021 20:43:32 %S A193090 1,5,3,4,8,6,7,2,9,1,5,3,4,8,6,7,2,9,1,5,3,4,8,6,7,2,9,1,5,3,4,8,6,7, %T A193090 2,9,1,5,3,4,8,6,7,2,9,1,5,3,4,8,6,7,2,9,1,5,3,4,8,6,7,2,9,1,5,3,4,8, %U A193090 6,7,2,9,1,5,3,4,8,6,7,2,9,1,5,3,4,8 %N A193090 Digital roots of the nonzero pentagonal numbers. %C A193090 This is a periodic sequence with period 9 and cycle 1,5,3,4,8,6,7,2,9 - which are also the coefficients of x in the numerator of the generating function. %C A193090 Note that the cycle 1,5,3,4,8,6,7,2,9 is a permutation of the first 9 natural numbers A000027. - _Omar E. Pol_, Aug 15 2011 %C A193090 This sequence is the same as A002450(n+1) mod 9, except with a value of 9 where that would return 0. - _Joe Slater_, Mar 04 2018 %H A193090 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,1). %F A193090 a(n) = a(n-9). %F A193090 As the sum of the terms contained in each cycle is 45, they also satisfy the eighth-order inhomogeneous recurrence a(n)=45-a(n-1)-a(n-2)-a(n-3)-a(n-4)-a(n-5)-a(n-6)-a(n-7)-a(n-8). %F A193090 a(n) = cos(8n Pi/9) (1 + 2 cos(2n Pi/9))(1 + 2 cos(2n Pi/3)) + (n + 7n^3 + 5n^4 + n^5 + 5n^6 + 4n^7 + 5n^8) mod 9. %F A193090 G.f.: x(1 + 5x + 3x^2 + 4x^3 + 8x^4 + 6x^5 + 7x^6 + 2x^7 + 9x^8)/((1-x)(1 + x + x^2)(1 + x^3 + x^6)). %F A193090 a(n) = A010888(A000326(n)). - _Jonathan Vos Post_, Aug 15 2011 %F A193090 a(n) = 9-((8*(4^n-1)/3) mod 9). - _Joe Slater_, Mar 04 2018 %e A193090 The sixth nonzero pentagonal number is A000326(6) = 51, which has digital root 5 + 1 = 6. Hence a(6) = 6. %t A193090 DigitalRoot[n_]:=FixedPoint[Plus@@IntegerDigits[#]&,n]; DigitalRoot[1/2 # (3#-1)]&/@Range[90] %t A193090 PadRight[{},120,{1,5,3,4,8,6,7,2,9}] (* _Harvey P. Dale_, Sep 12 2017 *) %o A193090 (PARI) a(n)=[9, 1, 5, 3, 4, 8, 6, 7, 2][n%9+1] \\ _Charles R Greathouse IV_, Oct 04 2012 %Y A193090 Cf. A000326, A002450, A010888. %K A193090 nonn,easy,base %O A193090 1,2 %A A193090 _Ant King_, Aug 15 2011