This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193091 #25 Jan 05 2025 19:51:39 %S A193091 1,1,3,1,6,14,1,9,37,79,1,12,69,242,494,1,15,110,516,1658,3294,1,18, %T A193091 160,928,3870,11764,22952,1,21,219,1505,7589,29307,85741,165127,1,24, %U A193091 287,2274,13355,61332,224357,638250,1217270,1,27,364,3262,21789,115003 %N A193091 Augmentation of the triangular array A158405. See Comments. %C A193091 Suppose that P is an infinite triangular array of numbers: %C A193091 p(0,0) %C A193091 p(1,0)...p(1,1) %C A193091 p(2,0)...p(2,1)...p(2,2) %C A193091 p(3,0)...p(3,1)...p(3,2)...p(3,3)... %C A193091 ... %C A193091 Let w(0,0)=1, w(1,0)=p(1,0), w(1,1)=p(1,1), and define %C A193091 W(n)=(w(n,0), w(n,1), w(n,2),...w(n,n-1), w(n,n)) recursively by W(n)=W(n-1)*PP(n), where PP(n) is the n X (n+1) matrix given by %C A193091 ... %C A193091 row 0 ... p(n,0) ... p(n,1) ...... p(n,n-1) ... p(n,n) %C A193091 row 1 ... 0 ..... p(n-1,0) ..... p(n-1,n-2) .. p(n-1,n-1) %C A193091 row 2 ... 0 ..... 0 ............ p(n-2,n-3) .. p(n-2,n-2) %C A193091 ... %C A193091 row n-1 . 0 ..... 0 ............. p(2,1) ..... p(2,2) %C A193091 row n ... 0 ..... 0 ............. p(1,0) ..... p(1,1) %C A193091 ... %C A193091 The augmentation of P is here introduced as the triangular array whose n-th row is W(n), for n>=0. The array P may be represented as a sequence of polynomials; viz., row n is then the vector of coefficients: p(n,0), p(n,1),...,p(n,n), from p(n,0)*x^n+p(n,1)*x^(n-1)+...+p(n,n). For example, (C(n,k)) is represented by ((x+1)^n); using this choice of P (that is, Pascal's triangle), the augmentation of P is calculated one row at a time, either by the above matrix products or by polynomial substitutions in the following manner: %C A193091 ... %C A193091 row 0 of W: 1, by decree %C A193091 row 1 of W: 1 augments to 1,1 %C A193091 ...polynomial version: 1 -> x+1 %C A193091 row 2 of W: 1,1 augments to 1,3,2 %C A193091 ...polynomial version: x+1 -> (x^2+2x+1)+(x+1)=x^2+3x+2 %C A193091 row 3 to W: 1,3,2 augments to 1,6,11,6 %C A193091 ...polynomial version: %C A193091 x^2+3x+2 -> (x+1)^3+3(x+1)^2+2(x+1)=(x+1)(x+2)(x+3) %C A193091 ... %C A193091 Examples of augmented triangular arrays: %C A193091 (p(n,k)=1) augments to A009766, Catalan triangle. %C A193091 Catalan triangle augments to A193560. %C A193091 Pascal triangle augments to A094638, Stirling triangle. %C A193091 A002260=((k+1)) augments to A023531. %C A193091 A154325 augments to A033878. %C A193091 A158405 augments to A193091. %C A193091 ((k!)) augments to A193092. %C A193091 A094727 augments to A193093. %C A193091 A130296 augments to A193094. %C A193091 A004736 augments to A193561. %C A193091 ... %C A193091 Regarding the specific augmentation W=A193091: w(n,n)=A003169. %C A193091 From _Peter Bala_, Aug 02 2012: (Start) %C A193091 This is the table of g(n,k) in the notation of Carlitz (p. 124). The triangle enumerates two-line arrays of positive integers %C A193091 ............a_1 a_2 ... a_n.......... %C A193091 ............b_1 b_2 ... b_n.......... %C A193091 such that %C A193091 1) max(a_i, b_i) <= min(a_(i+1), b_(i+1)) for 1 <= i <= n-1 %C A193091 2) max(a_i, b_i) <= i for 1 <= i <= n %C A193091 3) max(a_n, b_n) = k. %C A193091 See A071948 and A211788 for other two-line array enumerations. %C A193091 (End) %H A193091 L. Carlitz, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/11-2/carlitz.pdf">Enumeration of two-line arrays</a>, Fib. Quart., Vol. 11 Number 2 (1973), 113-130. %F A193091 From _Peter Bala_, Aug 02 2012: (Start) %F A193091 T(n,k) = (n-k+1)/n*Sum_{i=0..k} C(n+1,n-k+i+1)*C(2*n+i+1,i) for 0 <= k <= n. %F A193091 Recurrence equation: T(n,k) = Sum_{i=0..k} (2*k-2*i+1)*T(n-1,i). %F A193091 (End) %e A193091 The triangle P, at A158405, is given by rows %e A193091 1 %e A193091 1...3 %e A193091 1...3...5 %e A193091 1...3...5...7 %e A193091 1...3...5...7...9... %e A193091 The augmentation of P is the array W starts with w(0,0)=1, by definition of W. %e A193091 Successive polynomials (rows of W) arise from P as shown here: %e A193091 ... %e A193091 1->x+3, so that W has (row 1)=(1,3); %e A193091 ... %e A193091 x+3->(x^2+3x+5)+3*(x+3), so that W has (row 2)=(1,6,14); %e A193091 ... %e A193091 x^2+6x+14->(x^3+3x^2+5x+7)+6(x^2+3x+5)+14(x+3), so that (row 3)=(1,9,37,79). %e A193091 ... %e A193091 First 7 rows of W: %e A193091 1 %e A193091 1 3 %e A193091 1 6 14 %e A193091 1 9 37 79 %e A193091 1 12 69 242 494 %e A193091 1 15 110 516 1658 3294 %e A193091 1 18 160 928 3870 11764 22952 %t A193091 p[n_, k_] := 2 k + 1 %t A193091 Table[p[n, k], {n, 0, 5}, {k, 0, n}] (* A158405 *) %t A193091 m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}] %t A193091 TableForm[m[4]] %t A193091 w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1]; %t A193091 v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]}; %t A193091 v[n_] := v[n - 1].m[n] %t A193091 TableForm[Table[v[n], {n, 0, 6}]] (* A193091 *) %t A193091 Flatten[Table[v[n], {n, 0, 9}]] %Y A193091 Cf. A003169, A193092, A193093, A193094. %Y A193091 Cf. A071948, A211788. %K A193091 nonn,tabl,easy %O A193091 0,3 %A A193091 _Clark Kimberling_, Jul 30 2011