This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193095 #22 Jan 07 2023 09:26:55 %S A193095 0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0, %T A193095 0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, %U A193095 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 %N A193095 Number of times n can be written as concatenation of exactly two nonzero squares in decimal representation. %C A193095 a(A193096(n))=0; a(A191933(n))>0; a(A193097(n))=1; a(A192993(n))>1; a(A038670(n))=2. %H A193095 Reinhard Zumkeller, <a href="/A193095/b193095.txt">Table of n, a(n) for n = 0..10000</a> %e A193095 a(164) = 2, A191933(15) = A192993(1) = 164: 1'64 == 16'4. %o A193095 (Haskell) %o A193095 a193095 n = sum $ map c [1..(length $ show n) - 1] where %o A193095 c k | head ys == '0' = 0 %o A193095 | otherwise = a010052 (read xs) * a010052 (read ys) where %o A193095 (xs,ys) = splitAt k $ show n %o A193095 (PARI) A193095(n) = sum( t=1,#Str(n)-1, apply(issquare,divrem(n,10^t))==[1,1]~ && n%10^t>=10^(t-1)) \\ _M. F. Hasler_, Jul 24 2011 %o A193095 (PARI) A193095(n)={ my(c,p=1); while( n>p*=10, n%p*10>=p||next; issquare(n%p)||next; issquare(n\p) && c++);c} \\ _M. F. Hasler_, Jul 24 2011 %Y A193095 Cf. A010052. %K A193095 nonn,base %O A193095 0,165 %A A193095 _Reinhard Zumkeller_, Jul 17 2011