A193106 Minimal number of terms of A005826 needed to sum to n.
1, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 2, 3, 4, 1, 2, 3, 3, 4, 5, 2, 3, 4, 4, 5, 6, 3, 4, 1, 2, 3, 4, 4, 5, 2, 3, 4, 5, 5, 6, 3, 4, 5, 2, 3, 4, 4, 5, 1, 2, 3, 4, 5, 6, 2, 3, 4, 2, 3, 4, 3, 4, 5, 2, 3, 4, 4, 5, 6, 3, 4, 5, 3, 4, 5, 1, 2, 2, 3, 4, 5, 2, 3, 3, 4, 5, 3, 3, 4, 4, 2, 3, 3, 4, 5, 5, 3, 2, 3, 4, 5, 4, 4, 3, 2, 3, 3, 4, 5, 4, 1, 2, 3, 4, 5, 4, 2, 3, 4, 3
Offset: 1
Keywords
Links
- H. E. Salzer and N. Levine, Proof that every integer <= 452,479,659 is a sum of five numbers of the form Q_x = (x^3+5x)/6, x>= 0, Math. Comp., (1968), 191-192.
- G. L. Watson, Sums of eight values of a cubic polynomial, J. London Math. Soc., 27 (1952), 217-224.
Programs
-
Maple
t1:=[seq((n^3-7*n)/6, n=3..20)]; LAGRANGE(t1, 8 120); # the LAGRANGE transform of a sequence is defined in A193101 - N. J. A. Sloane, Jul 15 2011
Comments