A193138 Number of square satins of order n.
0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 3
Keywords
Examples
Primitive sums of two squares stated as a comment above: a(3) = 0 because 3 is not a sum of two squares. a(5) = 1 because 5 = 1^2 + 2^2, denoted by the unique (primitive) doublet [1, 2]. a(65) = 2 from the two (primitive) doublets [1, 8] and [4, 7]. a(85) = 2 with the (primitive) doublets [2, 9] and [6, 7]. a(8) = 0 because the doublet [2, 2] is imprimitive. - _Wolfdieter Lang_, Apr 18 2013
References
- Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.
Links
- B. Grünbaum and G. C. Shephard, Satins and twills: an introduction to the geometry of fabrics, Math. Mag., 53 (1980), 139-161. See Theorem 5, p. 152.
Programs
-
Maple
U:=proc(n) local nop,p3,i,t1,t2,al,even; t1:=ifactors(n)[2]; t2:=nops(t1); if (n mod 2) = 0 then even:=1; al:=t1[1][2]; else even:=0; al:=0; fi; nop:=t2-even; p3:=0; for i from 1 to t2 do if t1[i][1] mod 4 = 3 then p3:=1; fi; od: if (al >= 2) or (p3=1) then RETURN(0) else RETURN(2^(nop-1)); fi; end; [seq(U(n),n=3..120)];
-
Mathematica
a[n_] := Select[ PowersRepresentations[n, 2, 2], GCD @@ # == 1 &] // Length; a[2] = 0; Table[a[n], {n, 3, 120}] (* Jean-François Alcover, Apr 18 2013 *)
Formula
Take the prime number factorization (symbolically) as n = 2^a*product(p^b)*product(q^c) with primes p == 1(mod 4) and primes q == 3(mod 4) and n>=3. If a = 0 or 1 and all c's vanish then a(n) = 2^(t-1) with t the number of distinct primes congruent 1(mod 4). Otherwise a(n) = 0. (See the Niven-Zuckerman-Montgomery reference, Theorem 3.22, p. 165, and the Grünbaum-Shephard Theorem 5 formula for u(n)). - Wolfdieter Lang, Apr 18 2013
Comments