A193139 Number of symmetric satins of order n.
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 3, 0, 1, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 0, 1, 3, 1, 0, 0, 3, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 3, 0, 0, 1, 1, 1, 1, 0, 3, 0, 0, 0, 3, 1, 0, 1, 3, 0, 1, 1, 1, 1, 0, 1, 3, 0, 0, 1, 1, 0, 1, 0, 3, 3, 0, 0, 1, 0, 1, 1, 3, 0, 1, 1, 1, 1, 0, 1, 7
Offset: 3
Keywords
Links
- B. Grünbaum and G. C. Shephard, Satins and twills: an introduction to the geometry of fabrics, Math. Mag., 53 (1980), 139-161. See Theorem 5.
Programs
-
Maple
V:=proc(n) local j,i,t1,t2,al,even; t1:=ifactors(n)[2]; t2:=nops(t1); if (n mod 2) = 0 then even:=1; al:=t1[1][2]; else even:=0; al:=0; fi; j:=t2-even; if (al <= 1) then RETURN(2^(j-1)-1); fi; if (al = 2) then RETURN(2^j-1); fi; if (al >= 3) then RETURN(2^(j+1)-1); fi; end; [seq(V(n),n=3..120)];
Formula
a(n) = A157230(n) - 1. - Andrey Zabolotskiy, Dec 25 2018