This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193173 #35 May 22 2020 16:20:42 %S A193173 1,2,1,3,2,1,4,3,2,2,1,5,4,3,3,2,2,1,6,5,4,4,3,3,2,3,2,2,1,7,6,5,5,4, %T A193173 4,3,4,3,3,2,3,2,2,1,8,7,6,6,5,5,4,5,4,4,3,4,3,3,2,4,3,3,2,2,2,1,9,8, %U A193173 7,7,6,6,5,6,5,5,4,5,4,4,3,5,4,4,3,3,3,2,4,3,3,2,3,2,2,1,10,9,8,8,7,7,6,7,6 %N A193173 Triangle in which n-th row lists the number of elements in lexicographically ordered partitions of n, A026791. %C A193173 This sequence first differs from A049085 in the partitions of 6 (at flattened index 22): %C A193173 6, 5, 4, 4, 3, 3, 2, 3, 2, 2, 1 (this sequence); %C A193173 6, 5, 4, 3, 4, 3, 2, 3, 2, 2, 1 (A049085). %C A193173 - _Jason Kimberley_, Oct 27 2011 %C A193173 Rows sums give A006128, n >= 1. - _Omar E. Pol_, Dec 06 2011 %C A193173 The name is correct if the partitions are read in reverse, so that the parts are weakly increasing. The version for non-reversed partitions is A049085. %H A193173 Alois P. Heinz, <a href="/A193173/b193173.txt">Rows n = 1..26, flattened</a> %e A193173 The lexicographically ordered partitions of 3 are [[1, 1, 1], [1, 2], [3]], thus row 3 has 3, 2, 1. %e A193173 Triangle begins: %e A193173 1; %e A193173 2, 1; %e A193173 3, 2, 1; %e A193173 4, 3, 2, 2, 1; %e A193173 5, 4, 3, 3, 2, 2, 1; %e A193173 6, 5, 4, 4, 3, 3, 2, 3, 2, 2, 1; %e A193173 ... %p A193173 T:= proc(n) local b, ll; %p A193173 b:= proc(n,l) %p A193173 if n=0 then ll:= ll, nops(l) %p A193173 else seq(b(n-i, [l[], i]), i=`if`(l=[], 1, l[-1])..n) fi %p A193173 end; %p A193173 ll:= NULL; b(n, []); ll %p A193173 end: %p A193173 seq(T(n), n=1..11); %t A193173 lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]]; %t A193173 Table[Length/@Sort[Reverse/@IntegerPartitions[n],lexsort],{n,0,10}] (* _Gus Wiseman_, May 22 2020 *) %Y A193173 Row lengths are A000041. %Y A193173 Partition lengths of A026791. %Y A193173 The version ignoring length is A036043. %Y A193173 The version for non-reversed partitions is A049085. %Y A193173 The maxima of these partitions are A194546. %Y A193173 Reversed partitions in Abramowitz-Stegun order are A036036. %Y A193173 Reverse-lexicographically ordered partitions are A080577. %Y A193173 Cf. A001222, A115623, A129129, A185974, A193073, A211992, A228531, A334302, A334434, A334437, A334440, A334441. %K A193173 nonn,look,tabf %O A193173 1,2 %A A193173 _Alois P. Heinz_, Jul 17 2011