This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193196 #25 Jun 18 2019 03:58:33 %S A193196 1,1,2,3,6,9,19,29,57,94,172,280,519,833,1472,2433,4185,6800,11666, %T A193196 18816,31686,51340,84929,136561,225476,359746,586133,936243,1511650, %U A193196 2397400,3856698,6084186,9711492,15299490,24247456,38016261,60079125,93752706,147284928 %N A193196 G.f.: A(x) = Sum_{n>=0} x^n / Product_{k=1..n} (1 - k*x^k). %C A193196 Number of rooted ordered trees with n non-root nodes such that both successive branch heights and the lengths of the branches are weakly increasing; see example. - _Joerg Arndt_, Aug 27 2014 %H A193196 Robert Israel, <a href="/A193196/b193196.txt">Table of n, a(n) for n = 0..5627</a> %H A193196 Joerg Arndt, <a href="/A193196/a193196.txt">trees as in comment for 1<=n<=7</a> %F A193196 G.f.: G(0) - 1 where G(k) = 1 + (1-x)/(1-x^k*k)/(1-x/(x+(1-x)/G(k+1) )); (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Jan 22 2013 %F A193196 a(n) = sum( prod(j=2..m, min(C[j-1], C[j]))) where the sum is over all partitions C[1..m] (m parts) of n, see example. - _Joerg Arndt_, Sep 03 2014 %F A193196 From _Vaclav Kotesovec_, Jun 18 2019: (Start) %F A193196 a(n) ~ c * 3^(n/3), where %F A193196 c = 9390.8440644933535486959046639452060731482141... if mod(n,3)=0 %F A193196 c = 9390.7389359914729419715573277079935321683397... if mod(n,3)=1 %F A193196 c = 9390.7321933046037554603013237581369727858708... if mod(n,3)=2 %F A193196 (End) %e A193196 G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 9*x^5 + 19*x^6 + 29*x^7 +... %e A193196 where: %e A193196 A(x) = 1 + x/(1-x) + x^2/((1-x)*(1-2*x^2)) + x^3/((1-x)*(1-2*x^2)*(1-3*x^3)) + x^4/((1-x)*(1-2*x^2)*(1-3*x^3)*(1-4*x^4)) +... %e A193196 From _Joerg Arndt_, Aug 27 2014: (Start) %e A193196 The a(4) = 5 trees described in the comment are: %e A193196 : %e A193196 : 1: %e A193196 : [ 1 1 1 1 ] <--= branch lengths %e A193196 : [ 0 0 0 0 ] <--= branch heights %e A193196 : %e A193196 : O--o %e A193196 : .--o %e A193196 : .--o %e A193196 : .--o %e A193196 : %e A193196 : %e A193196 : 2: %e A193196 : [ 1 1 2 ] %e A193196 : [ 0 0 0 ] %e A193196 : %e A193196 : O--o %e A193196 : .--o %e A193196 : .--o--o %e A193196 : %e A193196 : %e A193196 : 3: %e A193196 : [ 1 3 ] %e A193196 : [ 0 0 ] %e A193196 : %e A193196 : O--o %e A193196 : .--o--o--o %e A193196 : %e A193196 : %e A193196 : 4: %e A193196 : [ 2 2 ] %e A193196 : [ 0 0 ] %e A193196 : %e A193196 : O--o--o %e A193196 : .--o--o %e A193196 : %e A193196 : %e A193196 : 5: %e A193196 : [ 2 2 ] %e A193196 : [ 0 1 ] %e A193196 : %e A193196 : O--o--o %e A193196 : .--o--o %e A193196 : %e A193196 : %e A193196 : 6: %e A193196 : [ 4 ] %e A193196 : [ 0 ] %e A193196 : %e A193196 : O--o--o--o--o %e A193196 : %e A193196 See the Arndt link for all examples for 1 <= n <= 7. %e A193196 (End) %e A193196 a(6) = 19 because the 11 partitions of 6 with the products as in the comment are %e A193196 01: [ 1 1 1 1 1 1 ] 1*1*1*1*1 = 1 %e A193196 02: [ 1 1 1 1 2 ] 1*1*1*1 = 1 %e A193196 03: [ 1 1 1 3 ] 1*1*1 = 1 %e A193196 04: [ 1 1 2 2 ] 1*1*2 = 2 %e A193196 05: [ 1 1 4 ] 1*1 = 1 %e A193196 06: [ 1 2 3 ] 1*2 = 1 %e A193196 07: [ 1 5 ] 1 = 1 %e A193196 08: [ 2 2 2 ] 2*2 = 4 %e A193196 09: [ 2 4 ] 2 = 2 %e A193196 10: [ 3 3 ] 3 = 3 %e A193196 11: [ 6 ] (empty prod.) = 1 %e A193196 and the sum of the products is 19. - _Joerg Arndt_, Sep 03 2014 %p A193196 N:= 100: # to get all terms up to a(N) %p A193196 gN:= add(x^n/mul(1-k*x^k,k=1..n),n=0..N): %p A193196 S:= series(gN,x,N+1): %p A193196 seq(coeff(S,x,n), n=0..N); # _Robert Israel_, Aug 28 2014 %o A193196 (PARI) {a(n)=my(A=1);polcoeff(sum(m=0,n,x^m/prod(k=1,m,1-k*x^k +x*O(x^n))),n)} %K A193196 nonn %O A193196 0,3 %A A193196 _Paul D. Hanna_, Jul 17 2011