cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193233 Triangle T(n,k), n>=1, 0<=k<=3^n, read by rows: row n gives the coefficients of the chromatic polynomial of the Hanoi graph H_n, highest powers first.

This page as a plain text file.
%I A193233 #22 Feb 16 2025 08:33:15
%S A193233 1,-3,2,0,1,-12,63,-190,363,-455,370,-180,40,0,1,-39,732,-8806,76293,
%T A193233 -507084,2689452,-11689056,42424338,-130362394,342624075,-776022242,
%U A193233 1522861581,-2598606825,3863562996,-5007519752,5652058863,-5541107684,4697231261
%N A193233 Triangle T(n,k), n>=1, 0<=k<=3^n, read by rows: row n gives the coefficients of the chromatic polynomial of the Hanoi graph H_n, highest powers first.
%C A193233 The Hanoi graph H_n has 3^n vertices and 3*(3^n-1)/2 edges. It represents the states and allowed moves in the Towers of Hanoi problem with n disks. The chromatic polynomial of H_n has 3^n+1 coefficients.
%H A193233 Alois P. Heinz, <a href="/A193233/b193233.txt">Rows n = 1..6, flattened</a>
%H A193233 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ChromaticPolynomial.html">Chromatic Polynomial</a>
%H A193233 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HanoiGraph.html">Hanoi Graph</a>
%H A193233 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chromatic_polynomial">Chromatic Polynomial</a>
%H A193233 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tower_of_Hanoi">Tower of Hanoi</a>
%e A193233 2 example graphs:          o
%e A193233 .                         / \
%e A193233 .                        o---o
%e A193233 .                       /     \
%e A193233 .             o        o       o
%e A193233 .            / \      / \     / \
%e A193233 .           o---o    o---o---o---o
%e A193233 Graph:       H_1          H_2
%e A193233 Vertices:     3            9
%e A193233 Edges:        3           12
%e A193233 The Hanoi graph H_1 equals the cycle graph C_3 with chromatic polynomial
%e A193233    q^3 -3*q^2 +2*q => [1, -3, 2, 0].
%e A193233 Triangle T(n,k) begins:
%e A193233   1,    -3,      2,          0;
%e A193233   1,   -12,     63,       -190,         363,            -455,  ...
%e A193233   1,   -39,    732,      -8806,       76293,         -507084,  ...
%e A193233   1,  -120,   7113,    -277654,     8028540,      -183411999,  ...
%e A193233   1,  -363,  65622,   -7877020,   706303350,    -50461570575,  ...
%e A193233   1, -1092, 595443, -216167710, 58779577593, -12769539913071,  ...
%e A193233   ...
%Y A193233 Cf. A000244, A029858.
%Y A193233 Cf. A288839 (chromatic polynomials of the n-Hanoi graph).
%Y A193233 Cf. A137889 (directed Hamiltonian paths in the n-Hanoi graph).
%Y A193233 Cf. A288490 (independent vertex sets in the n-Hanoi graph).
%Y A193233 Cf. A286017 (matchings in the n-Hanoi graph).
%Y A193233 Cf. A193136 (spanning trees of the n-Hanoi graph).
%Y A193233 Cf. A288796 (undirected paths in the n-Hanoi graph).
%K A193233 sign,tabf,look,hard
%O A193233 1,2
%A A193233 _Alois P. Heinz_, Jul 18 2011