cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193248 Truncated dodecahedron, and truncated icosahedron with faces of centered polygons.

This page as a plain text file.
%I A193248 #44 May 21 2025 10:43:45
%S A193248 1,93,455,1267,2709,4961,8203,12615,18377,25669,34671,45563,58525,
%T A193248 73737,91379,111631,134673,160685,189847,222339,258341,298033,341595,
%U A193248 389207,441049,497301,558143,623755,694317,770009,851011,937503,1029665,1127677,1231719
%N A193248 Truncated dodecahedron, and truncated icosahedron with faces of centered polygons.
%C A193248 The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a truncated dodecahedron or truncated icosahedron.  Each iteration requires the addition of (n-2) edges and (n-1) vertices to complete the centered polygon of each face. [centered triangles (A005448) and centered decagons (A062786)] & [centered hexagons (A003215) and centered pentagons (A005891)] respectively.
%H A193248 Vincenzo Librandi, <a href="/A193248/b193248.txt">Table of n, a(n) for n = 1..10000</a>
%H A193248 Wikipedia, <a href="http://en.wikipedia.org/wiki/Tetrahedral_number">Tetrahedral number</a>
%H A193248 Wikipedia, <a href="http://en.wikipedia.org/wiki/Triangular_number">Triangular number</a>
%H A193248 Wikipedia, <a href="http://en.wikipedia.org/wiki/Centered_polygonal_number">Centered polygonal number</a>
%H A193248 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F A193248 a(n) = 30*n^3 - 45*n^2 + 17*n - 1.
%F A193248 G.f.: x*(1+x)*(x^2 + 88*x + 1) / (x-1)^4. - _R. J. Mathar_, Aug 26 2011
%F A193248 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=1, a(2)=93, a(3)=455, a(4)=1267. - _Harvey P. Dale_, Aug 28 2011
%F A193248 E.g.f.: 1 - (1 - 2*x - 45*x^2 - 30*x^3)*exp(x). - _G. C. Greubel_, Nov 10 2018
%t A193248 Table[30n^3-45n^2+17n-1,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,93,455,1267},40] (* _Harvey P. Dale_, Aug 28 2011 *)
%o A193248 (Magma) [30*n^3-45*n^2+17*n-1: n in [1..50]]; // _Vincenzo Librandi_, Aug 30 2011
%o A193248 (PARI) vector(40, n, 30*n^3 - 45*n^2 + 17*n - 1) \\ _G. C. Greubel_, Nov 10 2018
%Y A193248 Cf. A003215, A005448, A005891, A062786.
%K A193248 nonn,easy
%O A193248 1,2
%A A193248 _Craig Ferguson_, Jul 19 2011