This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193252 #69 Mar 14 2025 15:51:57 %S A193252 1,75,365,1015,2169,3971,6565,10095,14705,20539,27741,36455,46825, %T A193252 58995,73109,89311,107745,128555,151885,177879,206681,238435,273285, %U A193252 311375,352849,397851,446525,499015,555465,616019,680821,750015,823745,902155,985389,1073591 %N A193252 Great rhombicuboctahedron with faces of centered polygons. %C A193252 The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a great rhombicosidodecahedron. Each iteration requires the addition of (n-2) edge units and (n-1) vertices to complete the centered polygon of each face: centered squares, centered octagons and centered hexagons. %H A193252 Bruno Berselli, <a href="/A193252/b193252.txt">Table of n, a(n) for n = 1..1000</a> %H A193252 OEIS Wiki, <a href="/wiki/(Centered_polygons)_pyramidal_numbers">(Centered polygons) pyramidal numbers</a> %H A193252 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetrahedral_number">Tetrahedral number</a> %H A193252 Wikipedia, <a href="https://en.wikipedia.org/wiki/Triangular_number">Triangular number</a> %H A193252 Wikipedia, <a href="https://en.wikipedia.org/wiki/Centered_polygonal_number">Centered polygonal number</a> %H A193252 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A193252 a(n) = 24*n^3 - 36*n^2 + 14*n - 1. %F A193252 G.f.: x*(1+x)*(1+70*x+x^2)/(1-x)^4; a(n) = (2*n-1)*A069190(n). - _Bruno Berselli_, Jul 21 2011 %F A193252 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=75, a(2)=365, a(3)=1015. - _Harvey P. Dale_, Jul 27 2011 %F A193252 a(n) = 72 * A000330(n-1) + A005408(n-1). - _Bruce J. Nicholson_, Feb 23 2019 %F A193252 E.g.f.: 1 + (-1 + 2*x + 36*x^2 + 24*x^3)*exp(x). - _G. C. Greubel_, Feb 26 2019 %t A193252 Table[24n^3-36n^2+14n-1,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,75,365,1015},40] (* _Harvey P. Dale_, Jul 27 2011 *) %o A193252 (Excel) =24*ROW()^3-36*ROW()^2+14*ROW()-1 %o A193252 (Magma) A069190:=func<n | 12*n^2-12*n+1>; [(2*n-1)*A069190(n): n in [1..40]]; // _Bruno Berselli_, Jul 21 2011 %o A193252 (PARI) for(n=1,40, print1(24*n^3-36*n^2+14*n-1", ")); \\ _Bruno Berselli_, Jul 21 2011 %o A193252 (Sage) [24*n^3 -36*n^2 +14*n -1 for n in (1..40)] # _G. C. Greubel_, Feb 26 2019 %o A193252 (GAP) List([1..40], n-> 24*n^3 -36*n^2 +14*n -1); # _G. C. Greubel_, Feb 26 2019 %Y A193252 First differences in 2*A158591. %Y A193252 Cf. A001844 (centered square numbers), A016754 (centered octagonal numbers), A003215 (centered hexagonal numbers). %K A193252 nonn,easy %O A193252 1,2 %A A193252 _Craig Ferguson_, Jul 19 2011