This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193277 #25 Jun 16 2025 15:30:47 %S A193277 1,-3,2,0,1,-9,32,-56,48,-16,0,1,-27,339,-2625,14016,-54647,160663, %T A193277 -362460,631828,-848736,866640,-653248,343744,-112896,17408,0,1,-81, %U A193277 3204,-82476,1553454,-22823259,272286183,-2711405961,22990179324 %N A193277 Triangle T(n,k), n>=1, 0<=k<=(3+3^n)/2, read by rows: row n gives the coefficients of the chromatic polynomial of the Sierpinski gasket graph S_n, highest powers first. %C A193277 The Sierpinski graph S_n has (3+3^n)/2 vertices and 3^n edges. The chromatic polynomial of S_n has (3+3^n)/2+1 coefficients. %H A193277 Alois P. Heinz, <a href="/A193277/b193277.txt">Rows n = 1..7, flattened</a> %H A193277 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ChromaticPolynomial.html">Chromatic Polynomial</a>. %H A193277 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SierpinskiGasketGraph.html">SierpiĆski Gasket Graph</a>. %H A193277 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chromatic_polynomial">Chromatic Polynomial</a>. %e A193277 3 example graphs: o %e A193277 . / \ %e A193277 . o---o %e A193277 . / \ / \ %e A193277 . o o---o---o %e A193277 . / \ / \ / \ %e A193277 . o o---o o---o o---o %e A193277 . / \ / \ / \ / \ / \ / \ / \ %e A193277 . o---o o---o---o o---o---o---o---o %e A193277 Graph: S_1 S_2 S_3 %e A193277 Vertices: 3 6 15 %e A193277 Edges: 3 9 27 %e A193277 The Sierpinski graph S_1 is equal to the cycle graph C_3 with chromatic polynomial q^3 -3*q^2 +2*q => [1, -3, 2, 0]. %e A193277 Triangle T(n,k) begins: %e A193277 1, -3, 2, 0; %e A193277 1, -9, 32, -56, 48, -16, ... %e A193277 1, -27, 339, -2625, 14016, -54647, ... %e A193277 1, -81, 3204, -82476, 1553454, -22823259, ... %e A193277 1, -243, 29295, -2336013, 138604878, -6526886841, ... %e A193277 1, -729, 265032, -64069056, 11585834028, -1671710903793, ... %e A193277 1, -2187, 2389419, -1738877625, 948268049436, -413339609377179, ... %Y A193277 Cf. A000244, A067771, A185442, A193233. %K A193277 sign,tabf,look,hard %O A193277 1,2 %A A193277 _Alois P. Heinz_, Jul 20 2011