cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193279 Number of distinct sums of distinct proper divisors of n.

This page as a plain text file.
%I A193279 #34 Nov 29 2024 15:10:16
%S A193279 0,1,1,3,1,6,1,7,3,7,1,16,1,7,7,15,1,21,1,22,7,7,1,36,3,7,7,28,1,42,1,
%T A193279 31,7,7,7,55,1,7,7,50,1,54,1,31,27,7,1,76,3,31,7,31,1,66,7,64,7,7,1,
%U A193279 108,1,7,29,63,7,78,1,31,7,72,1,123,1,7,31,31
%N A193279 Number of distinct sums of distinct proper divisors of n.
%C A193279 a(n)=1 if and only if n is prime.
%C A193279 a(n)=n-1 if n is a power of 2.
%C A193279 a(n)=n if n is an even perfect number (is the converse true?)
%C A193279 Note: the count excludes an empty subset of proper divisors that would give 0 as a sum. - _Antti Karttunen_, Mar 07 2018
%H A193279 Antti Karttunen, <a href="/A193279/b193279.txt">Table of n, a(n) for n = 1..20000</a> (first 10000 terms from Amiram Eldar)
%p A193279 with(linalg): a:=proc(n) local dl,t: dl:=convert(numtheory[divisors](n) minus {n}, list): t:=nops(dl): return nops({seq(innerprod(dl, convert(2^t+i, base, 2)[1..t]), i=1..2^t-1)}): end: seq(a(n), n=1..76); # _Nathaniel Johnston_, Jul 23 2011
%t A193279 a[n_] := Module[{d = Most @ Divisors[n], x}, Count[CoefficientList[Product[1 + x^i, {i, d}], x], _?(# > 0 &)] - 1]; Array[a, 100] (* _Amiram Eldar_, Jun 13 2020 *)
%o A193279 (PARI)
%o A193279 \\ Slow and naive:
%o A193279 A193279(n) = if(1==n,0,my(pds = (divisors(n)[1..(numdiv(n)-1)]), maxsum = vecsum(pds), sums = vector(maxsum), psetsiz = (2^length(pds))-1, k = 0, s); for(i=1,psetsiz,s = vecsum(choosebybits(pds,i)); if(!sums[s],k++;sums[s]++)); (k)); \\ _Antti Karttunen_, Mar 07 2018
%o A193279 (PARI) A193279(n) = { my(p=1); fordiv(n, d, if(d<n, p *= (1 + 'x^d))); sum(i=1,poldegree(p),(0<polcoeff(p, i))); }; \\ _Antti Karttunen_, Nov 29 2024
%o A193279 (PARI) A193279(n) = { my(c=[0]); fordiv(n,d, if(d<n, c = Set(concat(c,vector(#c,i,c[i]+d))))); (#c)-1; }; \\ (see A119347) - _Antti Karttunen_, Nov 29 2024
%Y A193279 Cf. A193280.
%Y A193279 Cf. A119347 (allows also n to be included in the sums), A378447 (differences).
%K A193279 nonn
%O A193279 1,4
%A A193279 _Michael Engling_, Jul 20 2011