cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193280 Triangle read by rows: row n contains, in increasing order, all the distinct sums of distinct proper divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 1, 1, 2, 3, 4, 5, 6, 1, 1, 2, 3, 4, 5, 6, 7, 1, 3, 4, 1, 2, 3, 5, 6, 7, 8, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 1, 2, 3, 7, 8, 9, 10, 1, 3, 4, 5, 6, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Offset: 1

Views

Author

Michael Engling, Jul 20 2011

Keywords

Comments

Row n > 1 contains A193279(n) terms. In row n the first term is 1 and the last term is sigma(n) - n (= A000203(n) - n). Row 1 contains 0 because 1 has no proper divisors.

Examples

			Row 10 is 1,2,3,5,6,7,8 the possible sums obtained from the proper divisors 1, 2, and 5 of 10.
Triangle starts:
  0;
  1;
  1;
  1,2,3;
  1;
  1,2,3,4,5,6;
  1;
  1,2,3,4,5,6,7;
  1,3,4;
  1,2,3,5,6,7,8;
  1;
  1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16;
		

Crossrefs

Programs

  • Maple
    with(linalg): print(0); for n from 2 to 12 do dl:=convert(numtheory[divisors](n) minus {n}, list): t:=nops(dl): print(op({seq(innerprod(dl, convert(2^t+i, base, 2)[1..t]), i=1..2^t-1)})): od: # Nathaniel Johnston, Jul 23 2011