This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193281 #39 Feb 23 2023 18:02:53 %S A193281 1,1,3,10,49,271,1861,14218,125945,1222525,13274551,155993586, %T A193281 2006410033,27654327715,411146102641,6498852124066,109654601938801, %U A193281 1954603251773273,36899871955766155,732088187170903162,15288727416236948241,334089096072180624631 %N A193281 E.g.f.: A(x) = 1/[(1 - x^2)^(1 + 1/x)]. %C A193281 More generally, we have the identity: %C A193281 Sum_{n>=0} (x^n/n!)*Product_{k=1..n} (1+k*y) = 1/(1 - x*y)^(1 + 1/y); here y=x. %H A193281 Alois P. Heinz, <a href="/A193281/b193281.txt">Table of n, a(n) for n = 0..200</a> %F A193281 E.g.f.: A(x) = Sum_{n>=0} x^n/n! * Product_{k=1..n} (1 + k*x). %F A193281 E.g.f.: A(x)=1/[ (1 - x^2)*(1 - x^2)^(1/x)] = 1 + x*(1+x)/(G(0) - x*(1+x)) ; G(k) = 1 + k + x*(k*x+x+1) - x*(k+1)*(k*x+2*x+1)/G(k+1) ; (continued fraction). - _Sergei N. Gladkovskii_, Dec 02 2011 %F A193281 a(n) ~ n! * (n + log(n) + 2 + gamma - log(2))/4, where gamma is the Euler-Mascheroni constant (A001620). - _Vaclav Kotesovec_, Oct 08 2013 %F A193281 From _Peter Bala_, Aug 31 2014: (Start) %F A193281 E.g.f.: exp( sum{n = 1..inf} x^n/A110654(n) ). %F A193281 It appears that a(n) = 1 ( mod n*(n - 1) ) for n even, while a(n) = 1 ( mod n*(n - 1)/2 ) for n odd [checked up to a(100)]. (End) %F A193281 a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} k/A110654(k) * a(n-k)/(n-k)!. - _Seiichi Manyama_, Apr 30 2022 %e A193281 E.g.f.: A(x) = 1 + x + 3*x^2/2! + 10*x^3/3! + 49*x^4/4! + 271*x^5/5! +... %e A193281 where: %e A193281 A(x)^(x/(1+x)) = 1 + x^2 + x^4 + x^6 + x^8 + x^10 + x^12 +... %e A193281 Also, %e A193281 A(x) = 1 + x*(1+x) + x^2*(1+x)*(1+2*x)/2! + x^3*(1+x)*(1+2*x)*(1+3*x)/3! + x^4*(1+x)*(1+2*x)*(1+3*x)*(1+4*x)/4! +... %e A193281 The logarithm begins: %e A193281 log(A(x)) = x + x^2 + x^3/2 + x^4/2 + x^5/3 + x^6/3 + x^7/4 + x^8/4 +... %t A193281 CoefficientList[Series[1/((1-x^2)^(1+1/x)), {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Oct 08 2013 *) %o A193281 (PARI) {a(n)=n!*polcoeff(1/(1 - x^2 +x^2*O(x^n))^((1+x)/x),n)} %o A193281 (PARI) {a(n)=n!*polcoeff(sum(m=0,n,x^m/m!*prod(k=1,m,1+k*x+x*O(x^n))),n)} %o A193281 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, j/((j+1)\2)*v[i-j+1]/(i-j)!)); v; \\ _Seiichi Manyama_, Apr 30 2022 %Y A193281 Cf. A110654, A193287, A193288, A193289, A193290, A246689. %K A193281 nonn %O A193281 0,3 %A A193281 _Paul D. Hanna_, Jul 21 2011