This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193290 #12 Jan 11 2014 07:21:13 %S A193290 1,2,10,96,1388,26960,659352,19471984,674425600,26814697056, %T A193290 1203912012000,60251644584384,3326134996826688,200792710948417536, %U A193290 13159474030202943744,930524202271542658560,70616227020854238216192,5724780985202503068533760 %N A193290 E.g.f. satisfies: A(x) = 1/(1 - x*A(x))^(1 + 1/A(x)). %C A193290 More generally, we have the identity: %C A193290 Sum_{n>=0} (x^n/n!)*Product_{k=1..n} (1+k*y) = 1/(1 - x*y)^(1 + 1/y); here y=A(x). %H A193290 Vaclav Kotesovec, <a href="/A193290/b193290.txt">Table of n, a(n) for n = 0..100</a> %F A193290 E.g.f. satisfies: A(x) = Sum_{n>=0} x^n/n! * Product_{k=1..n} (1 + k*A(x)). %F A193290 a(n) ~ s*sqrt(r*(1+s)*(r*s-1)/(1-4*r*s+r^2*s*(2*s-1))) * n^(n-1) / (exp(n) * r^n), where s = 2.4590533113276368838... is the root of the equation (1+s)*(1+2*s) = s^(s/(1+s))*(1+s)^2 - s*log(s) and r = (1 - s^(-s/(1+s)))/s = 0.1921573821382919835... - _Vaclav Kotesovec_, Jan 11 2014 %e A193290 E.g.f.: A(x) = 1 + 2*x + 10*x^2/2! + 96*x^3/3! + 1388*x^4/4! + 26960*x^5/5! +... %e A193290 where e.g.f. A = A(x) satisfies: %e A193290 A = 1 + x*(1+A) + x^2*(1+A)*(1+2*A)/2! + x^3*(1+A)*(1+2*A)*(1+3*A)/3! + x^4*(1+A)*(1+2*A)*(1+3*A)*(1+4*A)/4! + x^5*(1+A)*(1+2*A)*(1+3*A)*(1+4*A)*(1+5*A)/5! +... %o A193290 (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1/(1-x*A +x*O(x^n))^(1+1/A));n!*polcoeff(A,n)} %o A193290 (PARI) {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,x^m/m!*prod(k=1,m,1+k*A+x*O(x^n))));n!*polcoeff(A,n)} %Y A193290 Cf. A094638, A193289, A193281, A193287, A193288. %K A193290 nonn %O A193290 0,2 %A A193290 _Paul D. Hanna_, Jul 21 2011