This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193297 #26 May 28 2018 03:42:31 %S A193297 1,3,7,12,28,65,50,140,325,811,225,700,1950,4866,12762,1092,3675, %T A193297 11375,34062,89334,244588,5684,20384,68250,227080,714672,1956704, %U A193297 5574956,31572,119364,425880,1532790,5360040,17610336,50174604,148332645 %N A193297 Triangle read by rows: T(n,k) = number of pairs of partitions of n that have block distance k (n >= 2, 2 <= k <= n). %H A193297 F. Ruskey and J. Woodcock, <a href="http://webhome.cs.uvic.ca/~ruskey/Publications/RandDist/RandDist.html">The Rand and block distances of pairs of set partitions</a>, Combinatorial algorithms, 287-299, Lecture Notes in Comput. Sci., 7056, Springer, Heidelberg, 2011. %H A193297 Frank Ruskey, Jennifer Woodcock and Yuji Yamauchi, <a href="https://doi.org/10.1016/j.jda.2012.04.003">Counting and computing the Rand and block distances of pairs of set partitions</a>, Journal of Discrete Algorithms, Volume 16, October 2012, Pages 236-248. - From _N. J. A. Sloane_, Oct 03 2012 %e A193297 Triangle begins %e A193297 1 %e A193297 3 7 %e A193297 12 28 65 %e A193297 50 140 325 811 %e A193297 225 700 1950 4866 12762 %e A193297 1092 3675 11375 34062 89334 244588 %e A193297 5684 20384 68250 227080 714672 1956704 5574956 %e A193297 31572 119364 425880 1532790 5360040 17610336 50174604 148332645 %e A193297 ... %Y A193297 Row sums give A193274. %Y A193297 Column k=2 gives A105479. %Y A193297 T(n,n) gives A152525. %K A193297 nonn,tabl %O A193297 2,2 %A A193297 _N. J. A. Sloane_, Aug 26 2011