This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193314 #35 Jul 10 2024 05:00:40 %S A193314 1,2,5,14,384,1715,714,633555 %N A193314 The smallest k such that the product k*(k+1) is divisible by the first n primes and no others. %C A193314 a(9)-a(21) do not exist. It seems unlikely that a(n) exists for larger n. [_Charles R Greathouse IV_, Aug 18 2011] %C A193314 If a term beyond a(8) exists, it is larger than 2.29*10^25. - _Giovanni Resta_, Nov 30 2019 %H A193314 Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_358.htm">Puzzle 358. Ruth-Aaron pairs revisited</a>, The Prime Puzzles & Problems Connection. %e A193314 n smallest k k*(k+1) prime factorization %e A193314 1 1 2 %e A193314 2 2 2*3 %e A193314 3 5 2*3*5 %e A193314 4 14 2*3*5*7 %e A193314 5 384 2^7*3*5*7*11 %e A193314 6 1715 2^2*3*7^3*11*13 %e A193314 7 714 2*3*5*7*11*13*17 %e A193314 8 633555 2^2*3^3*5*7*11^3*13*17*19^2 %t A193314 f[n_] := Block[{k = 1, p = Fold[ Times, 1, Prime@ Range@ n], tst = Prime@ Range@ n},While[ First@ Transpose@ FactorInteger[ k*p]!=tst || IntegerQ@ Sqrt[ 4k*p+1], k++]; Floor@ Sqrt[k*p]]; Array[f, 8] %t A193314 (* the search for a(9), I also used *) lst = {}; p = Prime@ Range@ 9; Do[ q = {a, b, c, d, e, f, g, h, i}; If[ IntegerQ[ Sqrt[4Times @@ (p^q) + 1]], r = Floor@ Sqrt@ Times @@ (p^q); Print@ r; AppendTo[lst, r]], {i, 9}, {h, 9}, {g, 9}, {f, 10}, {e, 11}, {d, 14}, {c, 16}, {b, 24}, {a, 8}] %o A193314 (PARI) a(n)={ %o A193314 my(v=[Mod(0,1)],u,P=1,t,g,k); %o A193314 forprime(p=2,prime(n), %o A193314 P*=p; %o A193314 u=List(); %o A193314 for(i=1,#v, %o A193314 listput(u,chinese(v[i],Mod(-1,p))); %o A193314 listput(u,chinese(v[i],Mod(0,p))) %o A193314 ); %o A193314 v=0;v=Vec(u) %o A193314 ); %o A193314 v=vecsort(lift(v)); %o A193314 while(1, %o A193314 for(i=1,#v, %o A193314 t=(v[i]+k)*(v[i]+k+1)/P; %o A193314 if(!t,next); %o A193314 while((g=gcd(P,t))>1, t/=g); %o A193314 if (t==1, return(v[i]+k)) %o A193314 ); %o A193314 k += P %o A193314 ) %o A193314 }; \\ _Charles R Greathouse IV_, Aug 18 2011 %o A193314 (Haskell) %o A193314 a193314 n = head [k | k <- [1..], let kk' = a002378 k, %o A193314 mod kk' (a002110 n) == 0, a006530 kk' == a000040 n] %o A193314 -- _Reinhard Zumkeller_, Jun 14 2015 %Y A193314 Cf. A006145, A039945. %Y A193314 Cf. A002110, A002378, A006530, A118478. %K A193314 nonn %O A193314 1,2 %A A193314 _Robert G. Wilson v_, Aug 17 2011