This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193347 #17 Jan 27 2025 02:22:49 %S A193347 0,1,1,0,1,2,1,2,0,2,1,2,1,2,2,0,1,2,1,2,2,2,1,3,0,2,2,2,1,3,1,2,2,2, %T A193347 2,0,1,2,2,3,1,3,1,2,2,2,1,2,0,2,2,2,1,3,2,3,2,2,1,4,1,2,2,0,2,3,1,2, %U A193347 2,3,1,4,1,2,2,2,2,3,1,2,0,2,1,4,2,2,2,3,1,4,2,2,2,2,2,4,1,2,2,0,1,3,1,3,3,2,1,4,1,3,2,2,1,3 %N A193347 Number of even divisors of tau(n). %H A193347 Antti Karttunen, <a href="/A193347/b193347.txt">Table of n, a(n) for n = 1..10000</a> %F A193347 a(n) = A183063(A000005(n)). - _Antti Karttunen_, May 28 2017 %F A193347 From _Amiram Eldar_, Jan 27 2025: (Start) %F A193347 a(n) = 0 if and only if n is a square. %F A193347 a(n) = A010553(n) - A193348(n). (End) %e A193347 a(24) = 3 because tau(24) = 8 and the 3 even divisors are {2, 4, 8}. %t A193347 f[n_] := Block[{d = Divisors[DivisorSigma[0,n]]}, Count[EvenQ[d], True]]; Table[f[n], {n, 80}] %o A193347 (PARI) a(n)=sumdiv(sigma(n,0),d,(1-d%2)); %Y A193347 Cf. A000005, A010553, A183063, A193348, A193350. %K A193347 nonn %O A193347 1,6 %A A193347 _Michel Lagneau_, Jul 23 2011