cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193365 a(n) = A220371(n)/(4*A220371(n-1)).

Original entry on oeis.org

15, 126, 143, 1020, 399, 1150, 783, 8184, 1295, 3198, 1935, 9212, 2703, 6270, 3599, 65520, 4623, 10366, 5775, 25596, 7055, 15486, 8463, 73720, 9999, 21630, 11663, 50172, 13455, 28798, 15375, 524256, 17423, 36990
Offset: 1

Views

Author

Johannes W. Meijer, Dec 21 2012

Keywords

Comments

This sequence is, via A220371, related to A220002, which is related to the Catalan numbers.
Information about the peculiar structure of the a(n) can be found in A220466.

Crossrefs

Programs

  • Maple
    nmax:= 34: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a(2^p*(2*n-1)) := 2^p*(2^(2*p+4)*(2*n-1)^2-1) od: od: seq(a(n), n=1..nmax);
  • Mathematica
    b[n_] := b[n] = 2^(2n) Product[2i+1, {i, 1, 2n}] GCD[n!, 2^n];
    a[n_] := b[n]/(4 b[n-1]);
    Array[a, 34] (* Jean-François Alcover, Jun 26 2019 *)
  • Sage
    def A193365_list(len):
        a = {}; z = 1; s = 0; p = 1
        while s < len:
            i = s; z += z
            while i < len:
                a[i] = p*((4*i+4)^2-1)
                i += z
            s += s + 1; p += p
        return [a[i] for i in range(len)]
    A193365_list(30)  # Peter Luschny, Dec 22 2012

Formula

a(n) = A220371(n)/(4*A220371(n-1))
a(2^p*(2*n-1)) = 2^p*(2^(2*p+4)*(2*n-1)^2-1), p >= 0.