A193365 a(n) = A220371(n)/(4*A220371(n-1)).
15, 126, 143, 1020, 399, 1150, 783, 8184, 1295, 3198, 1935, 9212, 2703, 6270, 3599, 65520, 4623, 10366, 5775, 25596, 7055, 15486, 8463, 73720, 9999, 21630, 11663, 50172, 13455, 28798, 15375, 524256, 17423, 36990
Offset: 1
Crossrefs
Cf. A220466
Programs
-
Maple
nmax:= 34: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a(2^p*(2*n-1)) := 2^p*(2^(2*p+4)*(2*n-1)^2-1) od: od: seq(a(n), n=1..nmax);
-
Mathematica
b[n_] := b[n] = 2^(2n) Product[2i+1, {i, 1, 2n}] GCD[n!, 2^n]; a[n_] := b[n]/(4 b[n-1]); Array[a, 34] (* Jean-François Alcover, Jun 26 2019 *)
-
Sage
def A193365_list(len): a = {}; z = 1; s = 0; p = 1 while s < len: i = s; z += z while i < len: a[i] = p*((4*i+4)^2-1) i += z s += s + 1; p += p return [a[i] for i in range(len)] A193365_list(30) # Peter Luschny, Dec 22 2012
Comments