This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193374 #18 Jul 22 2018 11:23:20 %S A193374 1,1,1,3,9,21,201,1191,4593,36009,620721,5297931,40360761,474989373, %T A193374 4345942329,122776895151,2118941145441,21344580276561,303071564084193, %U A193374 4476037678611219,59935820004483561,3838519441659950181,78361805638079449641,949279542954821272503 %N A193374 E.g.f.: A(x) = exp( Sum_{n>=1} x^(n*(n+1)/2) / (n*(n+1)/2) ). %C A193374 Number of permutations of [n] whose cycle lengths are triangular numbers. - _Alois P. Heinz_, May 12 2016 %H A193374 Alois P. Heinz, <a href="/A193374/b193374.txt">Table of n, a(n) for n = 0..451</a> %e A193374 E.g.f.: A(x) = 1 + x + x^2/2! + 3*x^3/3! + 9*x^4/4! + 21*x^5/5! + 201*x^6/6! +... %e A193374 where %e A193374 log(A(x)) = x + x^3/3 + x^6/6 + x^10/10 + x^15/15 + x^21/21 +... %p A193374 a:= proc(n) option remember; `if`(n=0, 1, add(`if`(issqr(8*j+1), %p A193374 a(n-j)*(j-1)!*binomial(n-1, j-1), 0), j=1..n)) %p A193374 end: %p A193374 seq(a(n), n=0..25); # _Alois P. Heinz_, May 12 2016 %t A193374 a[n_] := a[n] = If[n == 0, 1, Sum[If[IntegerQ @ Sqrt[8*j + 1], a[n - j]*(j - 1)!*Binomial[n - 1, j - 1], 0], {j, 1, n}]]; %t A193374 Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Jun 05 2018, after _Alois P. Heinz_ *) %o A193374 (PARI) {a(n)=n!*polcoeff(exp(sum(m=1,sqrtint(2*n+1),x^(m*(m+1)/2)/(m*(m+1)/2)+x*O(x^n))),n)} %Y A193374 Cf. A000217, A193375, A273001, A305824, A317130. %K A193374 nonn %O A193374 0,4 %A A193374 _Paul D. Hanna_, Jul 24 2011