A193404 Number of matchings (independent edge subsets) in the rooted tree with Matula-Goebel number n.
1, 2, 3, 3, 5, 5, 4, 4, 8, 8, 8, 7, 7, 7, 13, 5, 7, 12, 5, 11, 11, 13, 12, 9, 21, 12, 20, 10, 11, 19, 13, 6, 21, 11, 18, 16, 9, 9, 19, 14, 12, 17, 10, 18, 32, 20, 19, 11, 15, 30, 18, 17, 6, 28, 34, 13, 14, 19, 11, 25, 16, 21, 28, 7, 31, 31, 9, 15, 32, 27, 14
Offset: 1
Keywords
Examples
a(3)=3 because the rooted tree with Matula-Goebel number 3 is the path ABC on 3 vertices; it has 3 matchings: empty, {AB}, {BC}.
Links
- É. Czabarka, L. Székely, and S. Wagner, The inverse problem for certain tree parameters, Discrete Appl. Math., 157, 2009, 3314-3319.
- Emeric Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011.
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
- Index entries for sequences related to Matula-Goebel numbers
Crossrefs
Programs
-
Maple
with(numtheory): A := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [0, 1] elif bigomega(n) = 1 then [A(pi(n))[2], A(pi(n))[1]+A(pi(n))[2]] else [A(r(n))[1]*A(s(n))[2]+A(s(n))[1]*A(r(n))[2], A(r(n))[2]*A(s(n))[2]] end if end proc: a := proc (n) options operator, arrow: A(n)[1]+A(n)[2] end proc: seq(a(n), n = 1 .. 80);
-
Mathematica
r[n_] := FactorInteger[n][[1, 1]]; s[n_] := n/r[n]; A[n_] := Which[n == 1, {0, 1}, PrimeOmega[n] == 1, {A[PrimePi[n]][[2]], A[PrimePi[n]][[1]] + A[PrimePi[n]][[2]]}, True, {A[r[n]][[1]]* A[s[n]][[2]] + A[s[n]][[1]]*A[r[n]][[2]], A[r[n]][[2]]*A[s[n]][[2]]}]; a[n_] := Total[A[n]]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jun 25 2024, after Maple code *)
Formula
Define b(n) (c(n)) to be the number of matchings of the rooted tree with Matula-Goebel number n that contain (do not contain) the root. We have the following recurrence for the pair A(n)=[b(n),c(n)]. A(1)=[0,1]; if n=prime(t), then A(n)=[c(t),b(t)+c(t)]; if n=r*s (r,s,>=2), then A(n)=[b(r)*c(s)+c(r)*b(s), c(r)c(s)]. Clearly, a(n)=b(n)+c(n). See the Czabarka et al. reference (p. 3315, (2)). The Maple program is based on this recursive formula.
Comments