cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193406 The Matula numbers of the rooted trees that have no perfect matchings.

This page as a plain text file.
%I A193406 #29 Jun 25 2024 13:12:00
%S A193406 1,3,4,7,8,9,10,11,12,13,14,16,17,19,20,21,24,25,27,28,29,30,32,33,34,
%T A193406 35,36,37,38,39,40,42,43,44,46,47,48,49,50,51,52,53,56,57,58,59,60,61,
%U A193406 62,63,64,67,68,70,71,72,73,74,75,76,77,79,80,81,82,83,84,85,86,87,88,89,90,91,92,95,96,97,98,99,100
%N A193406 The Matula numbers of the rooted trees that have no perfect matchings.
%C A193406 The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
%C A193406 It is known that a tree has at most one perfect matching.
%C A193406 Complement of A193405.
%D A193406 C. D. Godsil, Algebraic Combinatorics, Chapman & Hall, New York, 1993.
%H A193406 É. Czabarka, L. Székely, and S. Wagner, <a href="https://doi.org/10.1016/j.dam.2009.07.004">The inverse problem for certain tree parameters</a>, Discrete Appl. Math., 157, 2009, 3314-3319.
%H A193406 Emeric Deutsch, <a href="http://arxiv.org/abs/1111.4288">Rooted tree statistics from Matula numbers</a>, arXiv:1111.4288 [math.CO], 2011.
%H A193406 F. Goebel, <a href="http://dx.doi.org/10.1016/0095-8956(80)90049-0">On a 1-1-correspondence between rooted trees and natural numbers</a>, J. Combin. Theory, B 29 (1980), 141-143.
%H A193406 I. Gutman and A. Ivic, <a href="http://dx.doi.org/10.1016/0012-365X(95)00182-V">On Matula numbers</a>, Discrete Math., 150, 1996, 131-142.
%H A193406 I. Gutman and Yeong-Nan Yeh, <a href="http://www.emis.de/journals/PIMB/067/3.html">Deducing properties of trees from their Matula numbers</a>, Publ. Inst. Math., 53 (67), 1993, 17-22.
%H A193406 D. W. Matula, <a href="http://www.jstor.org/stable/2027327">A natural rooted tree enumeration by prime factorization</a>, SIAM Rev. 10 (1968) 273.
%H A193406 <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a>
%F A193406 Define b(n) (c(n)) to be the generating polynomials of the matchings of the rooted tree with Matula-Goebel number n that contain (do not contain) the root, with respect to the size of the matching. We have the following recurrence for the pair M(n)=[b(n),c(n)]. M(1)=[0,1]; if n=prime(t) (=the t-th prime), then M(n)=[xc(t),b(t)+c(t)]; if n=r*s (r,s,>=2), then M(n)=[b(r)*c(s)+c(r)*b(s), c(r)*c(s)]. Then m(n)=b(n)+c(n) is the generating polynomial of the matchings of the rooted tree with respect to the size of the matchings (a modified matching polynomial). The tree has a perfect matching if and only if the degree of this polynomial is 1/2 of the number of vertices of the tree.
%e A193406 3 and 11 are in the sequence because they are the Matula numbers of paths on 3 and 5  vertices, respectively.
%p A193406 with(numtheory): N := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then 1+N(pi(n)) else N(r(n))+N(s(n))-1 end if end proc: M := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [0, 1] elif bigomega(n) = 1 then [x*M(pi(n))[2], M(pi(n))[1]+M(pi(n))[2]] else [M(r(n))[1]*M(s(n))[2]+M(r(n))[2]*M(s(n))[1], M(r(n))[2]*M(s(n))[2]] end if end proc: m := proc (n) options operator, arrow: sort(expand(M(n)[1]+M(n)[2])) end proc: NPM := {}: for n to 100 do if N(n) <> 2*degree(m(n)) then NPM := `union`(NPM, {n}) else  end if end do: NPM;
%t A193406 r[n_] := FactorInteger[n][[1, 1]];
%t A193406 s[n_] := n/r[n];
%t A193406 V[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, 1 + V[PrimePi[n]], True, V[r[n]] + V[s[n]] - 1];
%t A193406 M[n_] := Which[n == 1, {0, 1}, PrimeOmega[n] == 1, {x*M[PrimePi[n]][[2]], Total[M[PrimePi[n]]]}, True, {M[r[n]][[1]]*M[s[n]][[2]] + M[r[n]][[2]]*M[s[n]][[1]], M[r[n]][[2]]*M[s[n]][[2]]}];
%t A193406 m[n_] := M[n] // Total // Expand;
%t A193406 NPM = {};
%t A193406 Do[If[V[n] != 2 Exponent[m[n], x], NPM = Union[NPM, {n}]], {n, 1, 100}];
%t A193406 NPM (* _Jean-François Alcover_, Jun 21 2024, after Maple code *)
%Y A193406 Cf. A061775, A193405.
%K A193406 nonn
%O A193406 1,2
%A A193406 _Emeric Deutsch_, Feb 12 2012