cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193411 Primes which are sums of two or more distinct 4th powers of primes.

This page as a plain text file.
%I A193411 #25 Apr 27 2020 17:35:11
%S A193411 97,641,2417,14657,17123,17683,43283,46309,83537,112163,126739,129221,
%T A193411 129749,130337,145043,145603,173539,176021,176549,214483,216259,
%U A193411 229189,242419,243109,244901,257141,279857,280547,294563,295123,297589,310819,325541,365779
%N A193411 Primes which are sums of two or more distinct 4th powers of primes.
%C A193411 Primes in A130833. Primes which are sums of exactly two distinct 4th powers of primes must be in A094479 primes of the form p^4 + 16 where p is also a prime.
%C A193411 The first term that arises in more than one way is 6625607 = 2^4+5^4+7^4+11^4+17^4+23^4+41^4+43^4 = 2^4+5^4+7^4+13^4+17^4+29^4+31^4+47^4. - _Robert Israel_, Apr 27 2020
%H A193411 Robert Israel, <a href="/A193411/b193411.txt">Table of n, a(n) for n = 1..10000</a>
%e A193411 a(5) = 17123 = 3^4 + 7^4 + 11^4.
%p A193411 N:= 5*10^5: # for all terms <= N
%p A193411 S1:= {}:
%p A193411 S2:= {}:
%p A193411 p:= 1:
%p A193411 R:= {}:
%p A193411 do
%p A193411   p:= nextprime(p);
%p A193411   if p^4 > N then break fi;
%p A193411   s:= p^4;
%p A193411   nS2:= select(`<=`,map(`+`,S1 union S2, s), N);
%p A193411   S2:= S2 union nS2;
%p A193411   S1:= S1 union {s};
%p A193411   R:= R union select(isprime, nS2);
%p A193411 od:
%p A193411 sort(convert(R,list)); # _Robert Israel_, Apr 27 2020
%t A193411 nn = 9; Select[Sort[Table[Dot[IntegerDigits[i, 2, nn], Prime[Range[nn]]^4], {i, 2^nn-1}]], # < Prime[nn-1]^4 + Prime[nn]^4 && PrimeQ[#] &] (* _T. D. Noe_, Jul 27 2011 *)
%o A193411 (PARI) list(lim)=my(v=List(), t1, t2, t3, t4, t5, t6, t7); forprime(p=2, (lim-16)^(1/4), forprime(q=2, min(p-1, (lim-p^4)^(1/4)), t1=p^4+q^4; if(isprime(t1), listput(v, t1)); forprime(r=2, min(q-1, (lim-t1)^(1/4)), t2=t1+r^4; if(isprime(t2), listput(v, t2)); forprime(s=2, min(r-1, (lim-t2)^(1/4)), t3=t2+s^4; if(isprime(t3), listput(v, t3)); forprime(t=2, min(s-1, (lim-t3)^(1/4)), t4=t3+t^4; if(isprime(t4), listput(v, t4)); forprime(u=2, min(t-1, (lim-t4)^(1/4)), t5=t4+u^4; if(isprime(t5), listput(v, t5)); forprime(w=2, min(u-1, (lim-t5)^(1/4)), t6=t5+w^4; if(isprime(t6), listput(v, t6)); forprime(x=2, min(w-1, (lim-t6)^(1/4)), t7=t6+x^4; if(isprime(t7), listput(v, t7)); if(x>2&&t7+16<=lim&&isprime(t7+16), listput(v, t7+16)))))))))); vecsort(Vec(v), , 8);
%o A193411 list(4044955) \\ _Charles R Greathouse IV_, Jul 27 2011
%Y A193411 Cf. A000040, A000583, A030514, A094479, A192926.
%K A193411 nonn
%O A193411 1,1
%A A193411 _Jonathan Vos Post_, Jul 25 2011
%E A193411 a(7)-a(33) from _Charles R Greathouse IV_, Jul 25 2011