cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193435 exp( Sum_{n>=1} x^n / (n*(n+1)/2) ) = Sum_{n>=0} a(n)*x^n / (n!*(n+1)!).

This page as a plain text file.
%I A193435 #11 Oct 18 2012 12:29:17
%S A193435 1,2,10,96,1528,36720,1248560,57272320,3417283968,257711328000,
%T A193435 23999961081600,2707648512307200,364172045286804480,
%U A193435 57600985355595601920,10589369533424230348800,2239779182794304126976000,540207965396186411279155200
%N A193435 exp( Sum_{n>=1} x^n / (n*(n+1)/2) )  =  Sum_{n>=0} a(n)*x^n / (n!*(n+1)!).
%C A193435  Sum_{n>=0} a(n)/(n!*(n+1)!)  =  exp(2) =  7.389056098930...
%e A193435 A(x) = 1 + 2*x/(1!*2!) + 10*x^2/(2!*3!) + 96*x^3/(3!*4!) + 1528*x^4/(4!*5!) +...
%e A193435 where
%e A193435 log(A(x)) = x + x^2/3 + x^3/6 + x^4/10 + x^5/15 + x^6/21 + x^7/28 +...
%o A193435 (PARI) {a(n)=n!*(n+1)!*polcoeff(exp(sum(m=1,n,x^m/(m*(m+1)/2))+x*O(x^n)),n)}
%Y A193435 Cf. A193436.
%K A193435 nonn
%O A193435 0,2
%A A193435 _Paul D. Hanna_, Jul 25 2011