This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193441 #23 Oct 13 2014 04:06:12 %S A193441 1,1,7,111,3089,131985,7977687,645443295,67165412385,8722553971041, %T A193441 1380689271177255,261365482010524815,58252017195624969009, %U A193441 15086874107373899187825,4490370671139664566269175,1521257907398602231501780095,581762614758928225569542394945 %N A193441 E.g.f.: exp( Sum_{n>=1} n!^2*x^(2*n)/(2*n)! ) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!. %C A193441 Sum_{n>=0} a(n)/(2*n)! = exp(1/3 + 2*sqrt(3)*Pi/27) = 2.08840341696864282... %H A193441 Renzo Sprugnoli, <a href="http://www.emis.de/journals/INTEGERS/papers/g27/g27.Abstract.html">Sums of reciprocals of the central binomial coefficients</a>, Integers: electronic journal of combinatorial number theory, 6 (2006) #A27, 1-18. %F A193441 E.g.f.: exp(L(x)) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!, %F A193441 where L(x) = x^2/(4-x^2) + 4*x*arctan(x/sqrt(4-x^2))/sqrt((4-x^2)^3) %F A193441 from a formula given in the Sprugnoli link. %e A193441 E.g.f.: A(x) = 1 + x^2/2! + 7*x^4/4! + 111*x^6/6! + 3089*x^8/8! + 131985*x^10/10! + 7977687*x^12/12! +...+ a(n)*x^(2*n)/(2*n)! +... %e A193441 where %e A193441 log(A(x)) = x^2/2 + x^4/6 + x^6/20 + x^8/70 + x^10/252 + x^12/924 + x^14/3432 + x^16/12870 +...+ x^(2*n)/A000984(n) +... %e A193441 In closed form, %e A193441 log(A(x)) = x^2/(4-x^2) + 4*x*arctan(x/sqrt(4-x^2))/sqrt((4-x^2)^3). %o A193441 (PARI) {a(n)=(2*n)!*polcoeff(exp(sum(m=1,n,x^(2*m)/binomial(2*m,m))+O(x^(2*n+1))),2*n)} %o A193441 (PARI) /* Using formula for e.g.f. = exp(L(x)): */ %o A193441 {a(n)=local(Ox=O(x^(2*n+1)), L=x^2/(4-x^2 +Ox) + 4*x*atan(x/sqrt(4-x^2 +Ox))/sqrt((4-x^2 +Ox)^3)); (2*n)!*polcoeff(exp(L), 2*n)} %Y A193441 Cf. A193442, A193443, A193444, A000984 (C(2*n,n)). %K A193441 nonn %O A193441 0,3 %A A193441 _Paul D. Hanna_, Jul 25 2011